Add recommended queue endpoint and audio feature methods for song model

This commit is contained in:
Lukas Weger 2025-08-02 03:54:44 +02:00
parent 98baaed484
commit f99ae52c4a
4 changed files with 282 additions and 0 deletions

View file

@ -39,6 +39,8 @@ Authorization: Bearer <token>
#### Get Radio Station Queue
#### Get Recommended Queue
## Radio Station Management
#### Create Radio Station
@ -274,6 +276,39 @@ Retrieves the main song queue for a radio station. Returns a list of song object
}
```
#### Get Recommended Queue
**Endpoint:** `GET /api/songs/queue/recommended?radioStationId={radioStationId}&currentSongId={currentSongId}`
**Query Parameters:**
- `radioStationId` (required): The ID of the radio station
- `currentSongId` (optional): The ID of the currently playing song for similarity analysis
**Response:**
```json
{
"success": true,
"message": "Recommended queue retrieved successfully",
"data": [
{
"id": "4iV5W9uYEdYUVa79Axb7Rh",
"popularity": 85,
"tempo": 120.5,
"audioFeatures": {
"danceability": 0.8,
"energy": 0.7,
"valence": 0.6,
"acousticness": 0.1,
"instrumentalness": 0.0,
"speechiness": 0.04
}
}
]
}
```
## Error Responses
All error responses follow this format:

View file

@ -4,14 +4,17 @@ import com.serena.backend.dto.ApiResponse;
import com.serena.backend.dto.AddSongToClientQueueRequest;
import com.serena.backend.model.Song;
import com.serena.backend.service.RadioStationService;
import com.serena.backend.service.QueueService;
import com.serena.backend.service.JwtService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.*;
import java.util.List;
import java.util.Optional;
import java.util.Queue;
import java.util.ArrayList;
@RestController
@RequestMapping("/api/songs")
@ -21,6 +24,9 @@ public class SongController {
@Autowired
private RadioStationService radioStationService;
@Autowired
private QueueService queueService;
@Autowired
private JwtService jwtService;
@ -53,4 +59,39 @@ public class SongController {
.body(new ApiResponse<>(false, "Radio station not found", null));
}
}
@GetMapping("/queue/recommended")
public ResponseEntity<ApiResponse<List<Song>>> getRecommendedQueue(
@RequestParam String radioStationId,
@RequestParam(required = false) String currentSongId) {
Optional<com.serena.backend.model.RadioStation> stationOpt = radioStationService.getRadioStation(radioStationId);
if (stationOpt.isEmpty()) {
return ResponseEntity.status(HttpStatus.NOT_FOUND)
.body(new ApiResponse<>(false, "Radio station not found", null));
}
com.serena.backend.model.RadioStation station = stationOpt.get();
List<Song> queueList = new ArrayList<>(station.getSongQueue());
if (queueList.isEmpty()) {
return ResponseEntity.ok(new ApiResponse<>(true, "Empty queue", queueList));
}
Song currentSong = null;
if (currentSongId != null && !currentSongId.isEmpty()) {
currentSong = queueList.stream()
.filter(song -> song.getId().equals(currentSongId))
.findFirst()
.orElse(null);
}
List<com.serena.backend.model.Client> clients = radioStationService.getConnectedClients(radioStationId);
List<Song> sortedQueue = queueService.sortQueue(currentSong, queueList, clients);
return ResponseEntity.ok(new ApiResponse<>(true, "Recommended queue retrieved successfully", sortedQueue));
}
}

View file

@ -57,4 +57,28 @@ public class Song {
public void setAudioFeatures(Map<String, Double> audioFeatures) {
this.audioFeatures = audioFeatures;
}
public double getAcousticness() {
return audioFeatures.getOrDefault("acousticness", 0.0);
}
public double getDanceability() {
return audioFeatures.getOrDefault("danceability", 0.0);
}
public double getEnergy() {
return audioFeatures.getOrDefault("energy", 0.0);
}
public double getInstrumentalness() {
return audioFeatures.getOrDefault("instrumentalness", 0.0);
}
public double getSpeechiness() {
return audioFeatures.getOrDefault("speechiness", 0.0);
}
public double getValence() {
return audioFeatures.getOrDefault("valence", 0.0);
}
}

View file

@ -0,0 +1,182 @@
package com.serena.backend.service;
import com.serena.backend.model.Song;
import com.serena.backend.model.Client;
import org.springframework.stereotype.Service;
import java.util.*;
import java.util.stream.Collectors;
@Service
public class QueueService {
private static final double W1_PREFERRED_QUEUE = 0.3; // preferred queue position
private static final double W2_POPULARITY = 0.2; // popularity
private static final double W3_TEMPO_SIMILARITY = 0.2; // tempo similarity
private static final double W4_AUDIO_FEATURES = 0.3; // audio feature distance
public List<Song> sortQueue(Song currentSong, List<Song> queue, List<Client> clients) {
if (queue == null || queue.isEmpty()) {
return new ArrayList<>();
}
if (currentSong == null) {
return queue.stream()
.sorted((s1, s2) -> Integer.compare(s2.getPopularity(), s1.getPopularity()))
.collect(Collectors.toList());
}
Map<Song, Double> songScores = new HashMap<>();
for (Song song : queue) {
double totalScore = calculateRecommendationScore(currentSong, song, clients, queue);
songScores.put(song, totalScore);
}
return queue.stream()
.sorted((s1, s2) -> Double.compare(songScores.get(s2), songScores.get(s1)))
.collect(Collectors.toList());
}
private double calculateRecommendationScore(Song currentSong, Song song, List<Client> clients, List<Song> queue) {
double p1 = calculatePreferredQueueScore(song, clients);
double p2 = calculatePopularityScore(song);
double p3 = calculateTempoSimilarityScore(currentSong, song, queue);
double p4 = calculateAudioFeatureScore(currentSong, song);
return W1_PREFERRED_QUEUE * p1 + W2_POPULARITY * p2 + W3_TEMPO_SIMILARITY * p3 + W4_AUDIO_FEATURES * p4;
}
/**
* P1: Preferred Queue Position Score
* For each client, find the song's rank in their preferred queue and normalize.
*/
private double calculatePreferredQueueScore(Song song, List<Client> clients) {
if (clients == null || clients.isEmpty()) {
return 0.0;
}
List<Double> clientScores = new ArrayList<>();
for (Client client : clients) {
Queue<Song> preferredQueue = client.getPreferredQueue();
if (preferredQueue == null || preferredQueue.isEmpty()) {
continue;
}
List<Song> preferredList = new ArrayList<>(preferredQueue);
int position = -1;
for (int i = 0; i < preferredList.size(); i++) {
if (preferredList.get(i).getId().equals(song.getId())) {
position = i + 1; // 1-based position
break;
}
}
if (position > 0) {
// Normalize: 1 = most preferred (position 1), approaches 0 for later positions
double normalizedScore = 1.0 - ((double) (position - 1) / preferredList.size());
clientScores.add(normalizedScore);
}
}
return clientScores.isEmpty() ? 0.0 : clientScores.stream().mapToDouble(Double::doubleValue).average().orElse(0.0);
}
/**
* P2: Popularity Score
* Normalize popularity from 0-100 to 0.0-1.0
*/
private double calculatePopularityScore(Song song) {
return song.getPopularity() / 100.0;
}
/**
* P3: Tempo Similarity Score
* Calculate similarity based on tempo difference, normalized by max tempo.
*/
private double calculateTempoSimilarityScore(Song currentSong, Song song, List<Song> queue) {
double currentTempo = currentSong.getTempo();
double songTempo = song.getTempo();
// Find max tempo among current song and queue
double maxTempo = Math.max(currentTempo,
queue.stream().mapToDouble(Song::getTempo).max().orElse(currentTempo));
if (maxTempo == 0) {
return 1.0;
}
double tempoDistance = Math.abs(currentTempo - songTempo);
return 1.0 - (tempoDistance / maxTempo);
}
/**
* P4: Audio Feature Distance Score
* Calculate Euclidean distance between audio features and invert for similarity
* score.
*/
private double calculateAudioFeatureScore(Song currentSong, Song song) {
double distanceSquared = 0.0;
int featureCount = 0;
// Calculate Euclidean distance for each audio feature
double currentAcousticness = currentSong.getAcousticness();
double songAcousticness = song.getAcousticness();
distanceSquared += Math.pow(currentAcousticness - songAcousticness, 2);
featureCount++;
double currentDanceability = currentSong.getDanceability();
double songDanceability = song.getDanceability();
distanceSquared += Math.pow(currentDanceability - songDanceability, 2);
featureCount++;
double currentEnergy = currentSong.getEnergy();
double songEnergy = song.getEnergy();
distanceSquared += Math.pow(currentEnergy - songEnergy, 2);
featureCount++;
double currentInstrumentalness = currentSong.getInstrumentalness();
double songInstrumentalness = song.getInstrumentalness();
distanceSquared += Math.pow(currentInstrumentalness - songInstrumentalness, 2);
featureCount++;
double currentSpeechiness = currentSong.getSpeechiness();
double songSpeechiness = song.getSpeechiness();
distanceSquared += Math.pow(currentSpeechiness - songSpeechiness, 2);
featureCount++;
double currentValence = currentSong.getValence();
double songValence = song.getValence();
distanceSquared += Math.pow(currentValence - songValence, 2);
featureCount++;
if (featureCount == 0) {
return 0.0;
}
double distance = Math.sqrt(distanceSquared);
double maxDistance = Math.sqrt(featureCount);
double normalizedDistance = distance / maxDistance;
return 1.0 - normalizedDistance;
}
public static double getW1PreferredQueue() {
return W1_PREFERRED_QUEUE;
}
public static double getW2Popularity() {
return W2_POPULARITY;
}
public static double getW3TempoSimilarity() {
return W3_TEMPO_SIMILARITY;
}
public static double getW4AudioFeatures() {
return W4_AUDIO_FEATURES;
}
}