Add recommended queue endpoint and audio feature methods for song model
This commit is contained in:
parent
98baaed484
commit
f99ae52c4a
4 changed files with 282 additions and 0 deletions
|
@ -39,6 +39,8 @@ Authorization: Bearer <token>
|
|||
|
||||
#### Get Radio Station Queue
|
||||
|
||||
#### Get Recommended Queue
|
||||
|
||||
## Radio Station Management
|
||||
|
||||
#### Create Radio Station
|
||||
|
@ -274,6 +276,39 @@ Retrieves the main song queue for a radio station. Returns a list of song object
|
|||
}
|
||||
```
|
||||
|
||||
#### Get Recommended Queue
|
||||
|
||||
**Endpoint:** `GET /api/songs/queue/recommended?radioStationId={radioStationId}¤tSongId={currentSongId}`
|
||||
|
||||
**Query Parameters:**
|
||||
|
||||
- `radioStationId` (required): The ID of the radio station
|
||||
- `currentSongId` (optional): The ID of the currently playing song for similarity analysis
|
||||
|
||||
**Response:**
|
||||
|
||||
```json
|
||||
{
|
||||
"success": true,
|
||||
"message": "Recommended queue retrieved successfully",
|
||||
"data": [
|
||||
{
|
||||
"id": "4iV5W9uYEdYUVa79Axb7Rh",
|
||||
"popularity": 85,
|
||||
"tempo": 120.5,
|
||||
"audioFeatures": {
|
||||
"danceability": 0.8,
|
||||
"energy": 0.7,
|
||||
"valence": 0.6,
|
||||
"acousticness": 0.1,
|
||||
"instrumentalness": 0.0,
|
||||
"speechiness": 0.04
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Error Responses
|
||||
|
||||
All error responses follow this format:
|
||||
|
|
|
@ -4,14 +4,17 @@ import com.serena.backend.dto.ApiResponse;
|
|||
import com.serena.backend.dto.AddSongToClientQueueRequest;
|
||||
import com.serena.backend.model.Song;
|
||||
import com.serena.backend.service.RadioStationService;
|
||||
import com.serena.backend.service.QueueService;
|
||||
import com.serena.backend.service.JwtService;
|
||||
import org.springframework.beans.factory.annotation.Autowired;
|
||||
import org.springframework.http.ResponseEntity;
|
||||
import org.springframework.http.HttpStatus;
|
||||
import org.springframework.web.bind.annotation.*;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
import java.util.Queue;
|
||||
import java.util.ArrayList;
|
||||
|
||||
@RestController
|
||||
@RequestMapping("/api/songs")
|
||||
|
@ -21,6 +24,9 @@ public class SongController {
|
|||
@Autowired
|
||||
private RadioStationService radioStationService;
|
||||
|
||||
@Autowired
|
||||
private QueueService queueService;
|
||||
|
||||
@Autowired
|
||||
private JwtService jwtService;
|
||||
|
||||
|
@ -53,4 +59,39 @@ public class SongController {
|
|||
.body(new ApiResponse<>(false, "Radio station not found", null));
|
||||
}
|
||||
}
|
||||
|
||||
@GetMapping("/queue/recommended")
|
||||
public ResponseEntity<ApiResponse<List<Song>>> getRecommendedQueue(
|
||||
@RequestParam String radioStationId,
|
||||
@RequestParam(required = false) String currentSongId) {
|
||||
|
||||
Optional<com.serena.backend.model.RadioStation> stationOpt = radioStationService.getRadioStation(radioStationId);
|
||||
|
||||
if (stationOpt.isEmpty()) {
|
||||
return ResponseEntity.status(HttpStatus.NOT_FOUND)
|
||||
.body(new ApiResponse<>(false, "Radio station not found", null));
|
||||
}
|
||||
|
||||
com.serena.backend.model.RadioStation station = stationOpt.get();
|
||||
|
||||
List<Song> queueList = new ArrayList<>(station.getSongQueue());
|
||||
|
||||
if (queueList.isEmpty()) {
|
||||
return ResponseEntity.ok(new ApiResponse<>(true, "Empty queue", queueList));
|
||||
}
|
||||
|
||||
Song currentSong = null;
|
||||
if (currentSongId != null && !currentSongId.isEmpty()) {
|
||||
currentSong = queueList.stream()
|
||||
.filter(song -> song.getId().equals(currentSongId))
|
||||
.findFirst()
|
||||
.orElse(null);
|
||||
}
|
||||
|
||||
List<com.serena.backend.model.Client> clients = radioStationService.getConnectedClients(radioStationId);
|
||||
|
||||
List<Song> sortedQueue = queueService.sortQueue(currentSong, queueList, clients);
|
||||
|
||||
return ResponseEntity.ok(new ApiResponse<>(true, "Recommended queue retrieved successfully", sortedQueue));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -57,4 +57,28 @@ public class Song {
|
|||
public void setAudioFeatures(Map<String, Double> audioFeatures) {
|
||||
this.audioFeatures = audioFeatures;
|
||||
}
|
||||
|
||||
public double getAcousticness() {
|
||||
return audioFeatures.getOrDefault("acousticness", 0.0);
|
||||
}
|
||||
|
||||
public double getDanceability() {
|
||||
return audioFeatures.getOrDefault("danceability", 0.0);
|
||||
}
|
||||
|
||||
public double getEnergy() {
|
||||
return audioFeatures.getOrDefault("energy", 0.0);
|
||||
}
|
||||
|
||||
public double getInstrumentalness() {
|
||||
return audioFeatures.getOrDefault("instrumentalness", 0.0);
|
||||
}
|
||||
|
||||
public double getSpeechiness() {
|
||||
return audioFeatures.getOrDefault("speechiness", 0.0);
|
||||
}
|
||||
|
||||
public double getValence() {
|
||||
return audioFeatures.getOrDefault("valence", 0.0);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,182 @@
|
|||
package com.serena.backend.service;
|
||||
|
||||
import com.serena.backend.model.Song;
|
||||
import com.serena.backend.model.Client;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
import java.util.*;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
@Service
|
||||
public class QueueService {
|
||||
|
||||
private static final double W1_PREFERRED_QUEUE = 0.3; // preferred queue position
|
||||
private static final double W2_POPULARITY = 0.2; // popularity
|
||||
private static final double W3_TEMPO_SIMILARITY = 0.2; // tempo similarity
|
||||
private static final double W4_AUDIO_FEATURES = 0.3; // audio feature distance
|
||||
|
||||
public List<Song> sortQueue(Song currentSong, List<Song> queue, List<Client> clients) {
|
||||
if (queue == null || queue.isEmpty()) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
|
||||
if (currentSong == null) {
|
||||
return queue.stream()
|
||||
.sorted((s1, s2) -> Integer.compare(s2.getPopularity(), s1.getPopularity()))
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
Map<Song, Double> songScores = new HashMap<>();
|
||||
|
||||
for (Song song : queue) {
|
||||
double totalScore = calculateRecommendationScore(currentSong, song, clients, queue);
|
||||
songScores.put(song, totalScore);
|
||||
}
|
||||
|
||||
return queue.stream()
|
||||
.sorted((s1, s2) -> Double.compare(songScores.get(s2), songScores.get(s1)))
|
||||
.collect(Collectors.toList());
|
||||
}
|
||||
|
||||
private double calculateRecommendationScore(Song currentSong, Song song, List<Client> clients, List<Song> queue) {
|
||||
double p1 = calculatePreferredQueueScore(song, clients);
|
||||
double p2 = calculatePopularityScore(song);
|
||||
double p3 = calculateTempoSimilarityScore(currentSong, song, queue);
|
||||
double p4 = calculateAudioFeatureScore(currentSong, song);
|
||||
|
||||
return W1_PREFERRED_QUEUE * p1 + W2_POPULARITY * p2 + W3_TEMPO_SIMILARITY * p3 + W4_AUDIO_FEATURES * p4;
|
||||
}
|
||||
|
||||
/**
|
||||
* P1: Preferred Queue Position Score
|
||||
* For each client, find the song's rank in their preferred queue and normalize.
|
||||
*/
|
||||
private double calculatePreferredQueueScore(Song song, List<Client> clients) {
|
||||
if (clients == null || clients.isEmpty()) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
List<Double> clientScores = new ArrayList<>();
|
||||
|
||||
for (Client client : clients) {
|
||||
Queue<Song> preferredQueue = client.getPreferredQueue();
|
||||
if (preferredQueue == null || preferredQueue.isEmpty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
List<Song> preferredList = new ArrayList<>(preferredQueue);
|
||||
int position = -1;
|
||||
|
||||
for (int i = 0; i < preferredList.size(); i++) {
|
||||
if (preferredList.get(i).getId().equals(song.getId())) {
|
||||
position = i + 1; // 1-based position
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (position > 0) {
|
||||
// Normalize: 1 = most preferred (position 1), approaches 0 for later positions
|
||||
double normalizedScore = 1.0 - ((double) (position - 1) / preferredList.size());
|
||||
clientScores.add(normalizedScore);
|
||||
}
|
||||
}
|
||||
|
||||
return clientScores.isEmpty() ? 0.0 : clientScores.stream().mapToDouble(Double::doubleValue).average().orElse(0.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* P2: Popularity Score
|
||||
* Normalize popularity from 0-100 to 0.0-1.0
|
||||
*/
|
||||
private double calculatePopularityScore(Song song) {
|
||||
return song.getPopularity() / 100.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* P3: Tempo Similarity Score
|
||||
* Calculate similarity based on tempo difference, normalized by max tempo.
|
||||
*/
|
||||
private double calculateTempoSimilarityScore(Song currentSong, Song song, List<Song> queue) {
|
||||
double currentTempo = currentSong.getTempo();
|
||||
double songTempo = song.getTempo();
|
||||
|
||||
// Find max tempo among current song and queue
|
||||
double maxTempo = Math.max(currentTempo,
|
||||
queue.stream().mapToDouble(Song::getTempo).max().orElse(currentTempo));
|
||||
|
||||
if (maxTempo == 0) {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
double tempoDistance = Math.abs(currentTempo - songTempo);
|
||||
return 1.0 - (tempoDistance / maxTempo);
|
||||
}
|
||||
|
||||
/**
|
||||
* P4: Audio Feature Distance Score
|
||||
* Calculate Euclidean distance between audio features and invert for similarity
|
||||
* score.
|
||||
*/
|
||||
private double calculateAudioFeatureScore(Song currentSong, Song song) {
|
||||
double distanceSquared = 0.0;
|
||||
int featureCount = 0;
|
||||
|
||||
// Calculate Euclidean distance for each audio feature
|
||||
double currentAcousticness = currentSong.getAcousticness();
|
||||
double songAcousticness = song.getAcousticness();
|
||||
distanceSquared += Math.pow(currentAcousticness - songAcousticness, 2);
|
||||
featureCount++;
|
||||
|
||||
double currentDanceability = currentSong.getDanceability();
|
||||
double songDanceability = song.getDanceability();
|
||||
distanceSquared += Math.pow(currentDanceability - songDanceability, 2);
|
||||
featureCount++;
|
||||
|
||||
double currentEnergy = currentSong.getEnergy();
|
||||
double songEnergy = song.getEnergy();
|
||||
distanceSquared += Math.pow(currentEnergy - songEnergy, 2);
|
||||
featureCount++;
|
||||
|
||||
double currentInstrumentalness = currentSong.getInstrumentalness();
|
||||
double songInstrumentalness = song.getInstrumentalness();
|
||||
distanceSquared += Math.pow(currentInstrumentalness - songInstrumentalness, 2);
|
||||
featureCount++;
|
||||
|
||||
double currentSpeechiness = currentSong.getSpeechiness();
|
||||
double songSpeechiness = song.getSpeechiness();
|
||||
distanceSquared += Math.pow(currentSpeechiness - songSpeechiness, 2);
|
||||
featureCount++;
|
||||
|
||||
double currentValence = currentSong.getValence();
|
||||
double songValence = song.getValence();
|
||||
distanceSquared += Math.pow(currentValence - songValence, 2);
|
||||
featureCount++;
|
||||
|
||||
if (featureCount == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
double distance = Math.sqrt(distanceSquared);
|
||||
|
||||
double maxDistance = Math.sqrt(featureCount);
|
||||
double normalizedDistance = distance / maxDistance;
|
||||
|
||||
return 1.0 - normalizedDistance;
|
||||
}
|
||||
|
||||
public static double getW1PreferredQueue() {
|
||||
return W1_PREFERRED_QUEUE;
|
||||
}
|
||||
|
||||
public static double getW2Popularity() {
|
||||
return W2_POPULARITY;
|
||||
}
|
||||
|
||||
public static double getW3TempoSimilarity() {
|
||||
return W3_TEMPO_SIMILARITY;
|
||||
}
|
||||
|
||||
public static double getW4AudioFeatures() {
|
||||
return W4_AUDIO_FEATURES;
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue