api folder

This commit is contained in:
Tikhon Vodyanov 2025-08-02 13:32:15 +02:00
parent 797fec3135
commit 231b83afb5
4 changed files with 0 additions and 0 deletions

170
api/READMEPlantAPI.md Normal file
View file

@ -0,0 +1,170 @@
🌱 Plant Health & Identification API
An intelligent backend service built for our hackathon project. This API uses a dual-model AI system to analyze an image of a plant, first identifying its species and then assessing its health.
🚀 The Problem
Have you ever wondered what kind of plant you have or why its leaves are suddenly turning yellow? Our project aims to provide a simple, accessible answer. This repository contains the backend API that powers our application, capable of providing a comprehensive plant analysis from a single image.
🧠 The AI Pipeline
This API uses a two-stage process to analyze an image:
Species Identification: We use a custom-trained TensorFlow/Keras model, built on a MobileNetV2 architecture. This model was fine-tuned on a dataset of six specific plant types to achieve high accuracy in identifying which plant is in the image.
Health Assessment: Once the plant's species is known (e.g., "tomato"), we use OpenAI's powerful, open-source CLIP model. We dynamically generate text prompts like "a photo of a healthy tomato plant" or "a photo of a sick tomato plant with yellow spots" and ask CLIP which description best matches the image. This zero-shot approach allows for a flexible and nuanced understanding of the plant's health.
✨ Features
Identify 6 Plant Species: Accurately distinguishes between tomato, basil, mint, lettuce, rosemary, and strawberry.
Assess 4 Health States: Classifies plants as Healthy, Diseased, Dehydrated, or Dead.
Confidence Scores: Provides confidence levels for both the species identification and the health assessment.
Simple JSON API: Easy to integrate with any frontend or mobile application.
🛠️ Tech Stack
Backend Framework: Flask
AI / Machine Learning: TensorFlow (Keras), PyTorch, OpenAI CLIP
Image Processing: Pillow, OpenCV
Core Language: Python 3.10
🔌 API Documentation
This is the documentation for the main analysis endpoint.
Analyze a Plant Image
Endpoint: /analyze
Method: POST
Body: multipart/form-data
The request must contain a file field named image.
Successful Response (Status 200 OK)
The API will return a JSON object with the analysis.
Example Response:
Generated json
{
"plant_species": "tomato",
"identification_confidence": "97.45%",
"health_status": "Healthy",
"health_confidence": "89.12%",
"health_breakdown": {
"Healthy": 0.8912,
"Diseased": 0.0562,
"Dehydrated": 0.0421,
"Dead": 0.0105
}
}
Field Descriptions:
Key Type Description
plant_species String The identified species of the plant.
identification_confidence String The model's confidence in the species identification.
health_status String The most likely health status of the plant.
health_confidence String The model's confidence in the health assessment.
health_breakdown Object A dictionary of raw probability scores for each health state.
Error Responses
If the request is missing an image, the API will return:
Status: 400 Bad Request
Body: {"error": "No image file provided"}
For any other server-side issues, the API will return:
Status: 500 Internal Server Error
Body: {"error": "An internal server error occurred."}
🖥️ How to Run Locally
To run this backend server on your own machine, follow these steps.
Clone the Repository:
Generated bash
git clone <repository-url>
cd <repository-name>/backend
IGNORE_WHEN_COPYING_START
content_copy
download
Use code with caution.
Bash
IGNORE_WHEN_COPYING_END
Create a Virtual Environment:
Generated bash
python3 -m venv venv
source venv/bin/activate
IGNORE_WHEN_COPYING_START
content_copy
download
Use code with caution.
Bash
IGNORE_WHEN_COPYING_END
Install Dependencies:
This can take a while as it will download TensorFlow and PyTorch.
Generated bash
pip install -r requirements.txt
IGNORE_WHEN_COPYING_START
content_copy
download
Use code with caution.
Bash
IGNORE_WHEN_COPYING_END
Place the Model:
Make sure you have the trained Keras model (BestModel.keras) inside the models/ directory.
Run the Server:
Generated bash
python app.py
IGNORE_WHEN_COPYING_START
content_copy
download
Use code with caution.
Bash
IGNORE_WHEN_COPYING_END
The API will now be running on your local machine at http://127.0.0.1:5000.
📁 Project Structure
Generated code
/backend
|-- app.py # The main Flask server and API logic.
|-- models/ # Folder for the trained Keras model.
| |-- BestModel.keras
|-- requirements.txt # Python dependencies.
|-- .gitignore # Files to be ignored by Git (like the venv).
IGNORE_WHEN_COPYING_START
content_copy
download
Use code with caution.
IGNORE_WHEN_COPYING_END
👥 Authors
[Your Name]
[Teammate's Name]
[Teammate's Name]

115
api/abb.py Normal file
View file

@ -0,0 +1,115 @@
import io
import traceback
from flask import Flask, request, jsonify
from PIL import Image
import numpy as np
import torch
import clip
import tensorflow as tf
# --- Configuration ---
class Config:
"""Groups all required configuration variables in one place."""
PLANT_MODEL_PATH = 'models/BestModel.keras'
PLANT_CLASSES = ['tomato', 'basil', 'mint', 'lettuce', 'rosemary', 'strawberry']
IMG_SIZE = (384, 384)
# Health analysis prompt
HEALTH_PROMPTS = [
"a photo of a healthy {plant} plant with vibrant green leaves",
"a photo of a sick {plant} plant with yellow spots or discoloration",
"a photo of a dehydrated {plant} plant with wilted or drooping leaves",
"a photo of a dead {plant} plant with brown, dry, or crispy leaves"
]
HEALTH_LABELS = ["Healthy", "Diseased", "Dehydrated", "Dead"]
# --- Application Setup ---
app = Flask(__name__)
# --- Model Loading ---
def load_models():
"""Loads and initializes all required machine learning models."""
# Load plant identification model
print("1. Loading plant identification model...")
plant_model = tf.keras.models.load_model(Config.PLANT_MODEL_PATH)
# Load model for health analysis
print("2. Loading CLIP model for health analysis...")
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
print("\nAll models loaded successfully.")
return plant_model, clip_model, clip_preprocess, device
# Load models
plant_model, clip_model, clip_preprocess, device = load_models()
# --- Core ML Functions ---
def identify_plant(image):
"""Plant identification"""
img = image.resize(Config.IMG_SIZE)
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
img_array = tf.keras.applications.mobilenet_v2.preprocess_input(img_array)
preds = plant_model.predict(img_array, verbose=0)
best_idx = np.argmax(preds[0])
plant_name = Config.PLANT_CLASSES[best_idx]
confidence = float(np.max(preds))
return plant_name, confidence
def assess_health(plant_name, image):
"""Plant health"""
prompts = [p.format(plant=plant_name) for p in Config.HEALTH_PROMPTS]
image_input = clip_preprocess(image).unsqueeze(0).to(device)
text_tokens = clip.tokenize(prompts).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_tokens)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
probs = similarity.cpu().numpy()[0]
status = Config.HEALTH_LABELS[np.argmax(probs)]
confidence = float(np.max(probs))
probabilities = {label: float(p) for label, p in zip(Config.HEALTH_LABELS, probs)}
return status, confidence, probabilities
# --- API Endpoint ---
@app.route('/analyze', methods=['POST'])
def analyze_plant_image():
"""Image analysis."""
if 'image' not in request.files:
return jsonify({'error': 'No image file provided'}), 400
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read())).convert("RGB")
plant_name, plant_conf = identify_plant(image.copy())
health_status, health_conf, health_probs = assess_health(plant_name, image)
return jsonify({
'plant_species': plant_name,
'identification_confidence': f"{plant_conf:.2%}",
'health_status': health_status,
'health_confidence': f"{health_conf:.2%}",
'health_breakdown': health_probs
})
except Exception as e:
print("An error occurred:", str(e))
traceback.print_exc()
return jsonify({'error': 'An internal server error occurred.'}), 500
# --- Main Execution ---
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>

BIN
api/models/BestModel.keras Normal file

Binary file not shown.

55
api/requirements.txt Normal file
View file

@ -0,0 +1,55 @@
absl-py==2.3.1
astunparse==1.6.3
blinker==1.9.0
certifi==2025.7.14
charset-normalizer==3.4.2
click==8.2.1
-e git+https://github.com/openai/CLIP.git@dcba3cb2e2827b402d2701e7e1c7d9fed8a20ef1#egg=clip
filelock==3.18.0
Flask==3.1.1
flatbuffers==25.2.10
fsspec==2025.7.0
ftfy==6.3.1
gast==0.6.0
google-pasta==0.2.0
grpcio==1.74.0
gunicorn==21.2.0
h5py==3.14.0
idna==3.10
itsdangerous==2.2.0
Jinja2==3.1.6
keras==3.11.1
libclang==18.1.1
Markdown==3.8.2
markdown-it-py==3.0.0
MarkupSafe==3.0.2
mdurl==0.1.2
ml_dtypes==0.5.3
mpmath==1.3.0
namex==0.1.0
networkx==3.4.2
numpy==2.1.3
opt_einsum==3.4.0
optree==0.17.0
packaging==25.0
pillow==11.3.0
protobuf==5.29.5
Pygments==2.19.2
regex==2025.7.34
requests==2.32.4
rich==14.1.0
six==1.17.0
sympy==1.14.0
tensorboard==2.19.0
tensorboard-data-server==0.7.2
tensorflow==2.19.0
tensorflow-io-gcs-filesystem==0.37.1
termcolor==3.1.0
torch==2.7.1
torchvision==0.22.1
tqdm==4.67.1
typing_extensions==4.14.1
urllib3==2.5.0
wcwidth==0.2.13
Werkzeug==3.1.3
wrapt==1.17.2