team-6/api/abb.py

115 lines
No EOL
4 KiB
Python

import io
import traceback
from flask import Flask, request, jsonify
from PIL import Image
import numpy as np
import torch
import clip
import tensorflow as tf
# --- Configuration ---
class Config:
"""Groups all required configuration variables in one place."""
PLANT_MODEL_PATH = 'models/BestModel.keras'
PLANT_CLASSES = ['tomato', 'basil', 'mint', 'lettuce', 'rosemary', 'strawberry']
IMG_SIZE = (384, 384)
# Health analysis prompt
HEALTH_PROMPTS = [
"a photo of a healthy {plant} plant with vibrant green leaves",
"a photo of a sick {plant} plant with yellow spots or discoloration",
"a photo of a dehydrated {plant} plant with wilted or drooping leaves",
"a photo of a dead {plant} plant with brown, dry, or crispy leaves"
]
HEALTH_LABELS = ["Healthy", "Diseased", "Dehydrated", "Dead"]
# --- Application Setup ---
app = Flask(__name__)
# --- Model Loading ---
def load_models():
"""Loads and initializes all required machine learning models."""
# Load plant identification model
print("1. Loading plant identification model...")
plant_model = tf.keras.models.load_model(Config.PLANT_MODEL_PATH)
# Load model for health analysis
print("2. Loading CLIP model for health analysis...")
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
print("\nAll models loaded successfully.")
return plant_model, clip_model, clip_preprocess, device
# Load models
plant_model, clip_model, clip_preprocess, device = load_models()
# --- Core ML Functions ---
def identify_plant(image):
"""Plant identification"""
img = image.resize(Config.IMG_SIZE)
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
img_array = tf.keras.applications.mobilenet_v2.preprocess_input(img_array)
preds = plant_model.predict(img_array, verbose=0)
best_idx = np.argmax(preds[0])
plant_name = Config.PLANT_CLASSES[best_idx]
confidence = float(np.max(preds))
return plant_name, confidence
def assess_health(plant_name, image):
"""Plant health"""
prompts = [p.format(plant=plant_name) for p in Config.HEALTH_PROMPTS]
image_input = clip_preprocess(image).unsqueeze(0).to(device)
text_tokens = clip.tokenize(prompts).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_tokens)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
probs = similarity.cpu().numpy()[0]
status = Config.HEALTH_LABELS[np.argmax(probs)]
confidence = float(np.max(probs))
probabilities = {label: float(p) for label, p in zip(Config.HEALTH_LABELS, probs)}
return status, confidence, probabilities
# --- API Endpoint ---
@app.route('/analyze', methods=['POST'])
def analyze_plant_image():
"""Image analysis."""
if 'image' not in request.files:
return jsonify({'error': 'No image file provided'}), 400
try:
file = request.files['image']
image = Image.open(io.BytesIO(file.read())).convert("RGB")
plant_name, plant_conf = identify_plant(image.copy())
health_status, health_conf, health_probs = assess_health(plant_name, image)
return jsonify({
'plant_species': plant_name,
'identification_confidence': f"{plant_conf:.2%}",
'health_status': health_status,
'health_confidence': f"{health_conf:.2%}",
'health_breakdown': health_probs
})
except Exception as e:
print("An error occurred:", str(e))
traceback.print_exc()
return jsonify({'error': 'An internal server error occurred.'}), 500
# --- Main Execution ---
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)