team-10/venv/Lib/site-packages/transformers/models/minimax/modular_minimax.py

602 lines
27 KiB
Python
Raw Normal View History

2025-08-02 02:00:33 +02:00
# coding=utf-8
# Copyright 2025 MiniMaxAI and HuggingFace Inc. teams. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MiniMax model."""
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...configuration_utils import layer_type_validation
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import MoeModelOutputWithPast
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ...utils.generic import OutputRecorder
from ..mixtral.configuration_mixtral import MixtralConfig
from ..mixtral.modeling_mixtral import (
MixtralAttention,
MixtralDecoderLayer,
MixtralForCausalLM,
MixtralForQuestionAnswering,
MixtralForSequenceClassification,
MixtralForTokenClassification,
MixtralModel,
MixtralPreTrainedModel,
MixtralRMSNorm,
MixtralSparseMoeBlock,
)
logger = logging.get_logger(__name__)
class MiniMaxConfig(MixtralConfig):
r"""
This is the configuration class to store the configuration of a [`MiniMaxModel`]. It is used to instantiate an
MiniMax model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the MiniMax.
[MiniMaxAI/MiniMax-Text-01-hf](https://huggingface.co/MiniMaxAI/MiniMax-Text-01-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MiniMax model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MiniMaxModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. MiniMax's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `4096`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter
num_local_experts (`int`, *optional*, defaults to 8):
Number of experts per Sparse MLP layer.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
router_jitter_noise (`float`, *optional*, defaults to 0.0):
Amount of noise to add to the router.
layer_types (`list`, *optional*):
Attention pattern for each layer.
block_size (`int`, *optional*, defaults to 256):
The length of each attention block, determining how queries, keys, and values
are grouped and processed for intra- and inter-block attention.
full_attn_alpha_factor (`float`, *optional*, defaults to 1):
Weight for residual value in residual connection after normal attention.
full_attn_beta_factor (`float`, *optional*, defaults to 1):
Weight for hidden state value in residual connection after normal attention.
linear_attn_alpha_factor (`float`, *optional*, defaults to 1):
Weight for residual value in residual connection after lightning attention.
linear_attn_beta_factor (`float`, *optional*, defaults to 1):
Weight for hidden state value in residual connection after lightning attention.
mlp_alpha_factor (`float`, *optional*, defaults to 1):
Weight for residual value in residual connection after MLP.
mlp_beta_factor (`float`, *optional*, defaults to 1):
Weight for hidden state value in residual connection after MLP.
```python
>>> from transformers import MiniMaxModel, MiniMaxConfig
>>> # Initializing a MiniMax style configuration
>>> configuration = MiniMaxConfig()
>>> # Initializing a model from the MiniMax style configuration
>>> model = MiniMaxModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
def __init__(
self,
layer_types=None,
block_size=256,
full_attn_alpha_factor=1,
full_attn_beta_factor=1,
linear_attn_alpha_factor=1,
linear_attn_beta_factor=1,
mlp_alpha_factor=1,
mlp_beta_factor=1,
**super_kwargs,
):
super().__init__(**super_kwargs)
self.layer_types = layer_types
self.block_size = block_size
self.full_attn_alpha_factor = full_attn_alpha_factor
self.full_attn_beta_factor = full_attn_beta_factor
self.linear_attn_alpha_factor = linear_attn_alpha_factor
self.linear_attn_beta_factor = linear_attn_beta_factor
self.mlp_alpha_factor = mlp_alpha_factor
self.mlp_beta_factor = mlp_beta_factor
if self.layer_types is None:
self.layer_types = [
"full_attention" if bool((i + 1) % 2) else "linear_attention" for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types)
class MiniMaxRMSNorm(MixtralRMSNorm):
pass
class MiniMaxCache(DynamicCache):
def __init__(self):
super().__init__()
self.linear_cache: list[torch.Tensor] = []
def set_linear_cache(self, layer_idx, linear_cache):
# There may be skipped layers, fill them with empty lists
for _ in range(len(self.linear_cache), layer_idx + 1):
self.linear_cache.append([])
self.linear_cache[layer_idx] = linear_cache
def get_linear_cache(self, layer_idx: int):
if layer_idx < len(self):
return self.linear_cache[layer_idx]
return None
def __len__(self):
return max(super().__len__(), len(self.linear_cache))
def __getitem__(self, layer_idx: int):
if layer_idx < len(self.linear_cache) and self.linear_cache[layer_idx] != []:
return (self.linear_cache[layer_idx],)
return super().__getitem__(layer_idx)
def __iter__(self):
for layer_idx in range(len(self)):
yield self[layer_idx]
def batch_repeat_interleave(self, repeats: int):
for layer_idx in range(len(self)):
if self.linear_cache[layer_idx] != []:
self.linear_cache[layer_idx] = self.linear_cache[layer_idx].repeat_interleave(repeats, dim=0)
else:
self.layers[layer_idx].batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
for layer_idx in range(len(self)):
if self.linear_cache[layer_idx] != []:
self.linear_cache[layer_idx] = self.linear_cache[layer_idx][indices, ...]
else:
self.layers[layer_idx].batch_select_indices(indices)
def crop(self, max_length: int):
raise RuntimeError("MiniMaxCache doesnot support `crop` method")
class MiniMaxLightningAttention(nn.Module):
def __init__(self, config: MiniMaxConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
self.num_attention_heads = config.num_attention_heads
self.num_hidden_layers = config.num_hidden_layers
self.block_size = config.block_size
self.act_fn = ACT2FN[config.hidden_act]
self.norm = MiniMaxRMSNorm(self.head_dim * self.num_attention_heads)
self.qkv_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim * 3, bias=False)
self.out_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.output_gate = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
slope_rate = self.get_slope_rate()
query_decay, key_decay, diagonal_decay = self.decay_factors(slope_rate)
self.register_buffer("slope_rate", slope_rate)
self.register_buffer("query_decay", query_decay)
self.register_buffer("key_decay", key_decay)
self.register_buffer("diagonal_decay", diagonal_decay)
def get_slope_rate(self):
base = 1 / (2 ** (8 / self.num_attention_heads))
exponent = torch.arange(self.num_attention_heads) + 1
factor = 1 - self.layer_idx / (self.num_hidden_layers - 1 + 1e-5) + 1e-5
rate = base**exponent
rate = rate * factor
rate = rate[:, None, None]
return rate
def decay_factors(self, slope_rate):
block_size_range = torch.arange(self.block_size) + 1
query_decay = torch.exp(-slope_rate * block_size_range[:, None])
key_decay = torch.exp(-slope_rate * (self.block_size - block_size_range[:, None]))
diagonal_decay = block_size_range[:, None] - block_size_range[None, :]
diagonal_decay = diagonal_decay[None, None, :, :]
diagonal_decay = slope_rate * diagonal_decay
diagonal_decay = torch.where(diagonal_decay >= 0, -diagonal_decay, float("-inf"))
diagonal_decay = torch.exp(diagonal_decay)
return query_decay, key_decay, diagonal_decay
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
batch_size, seq_len, hidden_size = hidden_states.shape
num_blocks = (seq_len + self.block_size - 1) // self.block_size
qkv_states = self.act_fn(self.qkv_proj(hidden_states))
qkv_states = qkv_states.reshape(batch_size, seq_len, self.num_attention_heads, 3 * self.head_dim)
query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=3)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# calculated (K.T @ V) and saved as cache
attn_weights_inter = None
if past_key_value is not None:
attn_weights_inter = past_key_value.get_linear_cache(self.layer_idx)
if attn_weights_inter is None:
attn_weights_inter = torch.zeros(batch_size, self.num_attention_heads, self.head_dim, self.head_dim).to(
value_states
)
# apply attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(dtype=torch.bool) # Ensure it's a boolean tensor
value_states = value_states.masked_fill(~attention_mask.unsqueeze(1).unsqueeze(-1), 0)
attn_output = []
for i in range(num_blocks):
start_idx = i * self.block_size
end_idx = min(start_idx + self.block_size, seq_len)
current_block_size = end_idx - start_idx
current_query_states = query_states[:, :, start_idx:end_idx]
current_key_states = key_states[:, :, start_idx:end_idx]
current_value_states = value_states[:, :, start_idx:end_idx]
current_query_decay = self.query_decay[:, :current_block_size]
current_key_decay = self.key_decay[:, -current_block_size:]
current_diagonal_decay = self.diagonal_decay[:, :, :current_block_size, :current_block_size]
block_decay = torch.exp(-self.slope_rate * current_block_size)
# intra: ( Q @ K.T ) @ V -> QK * V
attn_weights_intra = torch.matmul(current_query_states, current_key_states.transpose(-1, -2))
attn_output_intra = torch.matmul(attn_weights_intra * current_diagonal_decay, current_value_states)
# inter: Q @ ( K.T @ V ) -> Q * KV
attn_output_inter = torch.matmul(current_query_states * current_query_decay, attn_weights_inter)
# final attention output
current_attn_output = attn_output_inter + attn_output_intra
attn_output.append(current_attn_output)
# cacluate attn_weights_inter for next block or cache
next_attn_weights_inter = torch.matmul(
(current_key_states * current_key_decay).transpose(-1, -2), current_value_states
)
attn_weights_inter = attn_weights_inter * block_decay + next_attn_weights_inter
else:
ratio = torch.exp(-self.slope_rate)
attn_output = []
for i in range(seq_len):
current_query_states = query_states[:, :, i : i + 1]
current_key_states = key_states[:, :, i : i + 1]
current_value_states = value_states[:, :, i : i + 1]
current_attn_weights_inter = torch.matmul(current_key_states.transpose(-1, -2), current_value_states)
attn_weights_inter = ratio * attn_weights_inter + current_attn_weights_inter
current_attn_output = torch.matmul(current_query_states, attn_weights_inter)
attn_output.append(current_attn_output)
# concatenate attention outputs over all blocks
attn_output = torch.cat(attn_output, dim=-2)
# final output projection
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, seq_len, self.num_attention_heads * self.head_dim)
attn_output = self.norm(attn_output)
attn_output = F.sigmoid(self.output_gate(hidden_states)) * attn_output
attn_output = self.out_proj(attn_output)
# update cache
if past_key_value is not None:
past_key_value.set_linear_cache(self.layer_idx, attn_weights_inter)
return attn_output, attn_weights_inter
class MiniMaxAttention(MixtralAttention):
pass
class MiniMaxSparseMoeBlock(MixtralSparseMoeBlock):
pass
class MiniMaxDecoderLayer(MixtralDecoderLayer, GradientCheckpointingLayer):
def __init__(self, config: MiniMaxConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.layer_idx = layer_idx
self.layer_type = config.layer_types[layer_idx]
self.mlp_alpha_factor = config.mlp_alpha_factor
self.mlp_beta_factor = config.mlp_beta_factor
if self.layer_type == "linear_attention":
self.self_attn = MiniMaxLightningAttention(config, layer_idx)
self.attn_alpha_factor = config.linear_attn_alpha_factor
self.attn_beta_factor = config.linear_attn_beta_factor
else:
self.self_attn = MiniMaxAttention(config, layer_idx)
self.attn_alpha_factor = config.full_attn_alpha_factor
self.attn_beta_factor = config.full_attn_beta_factor
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
attention_mask (`torch.Tensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
hidden_states = self.input_layernorm(hidden_states)
residual = hidden_states
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual * self.attn_alpha_factor + hidden_states * self.attn_beta_factor
# Fully Connected
hidden_states = self.post_attention_layernorm(hidden_states)
residual = hidden_states
hidden_states, _ = self.block_sparse_moe(hidden_states)
hidden_states = residual * self.mlp_alpha_factor + hidden_states * self.mlp_beta_factor
return hidden_states
class MiniMaxPreTrainedModel(MixtralPreTrainedModel):
_can_compile_fullgraph = False
_can_record_outputs = {
"router_logits": OutputRecorder(MiniMaxSparseMoeBlock, index=1),
"hidden_states": MiniMaxDecoderLayer,
"attentions": [MiniMaxAttention, MiniMaxLightningAttention],
}
class MiniMaxModel(MixtralModel):
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[MiniMaxCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = MiniMaxCache()
elif use_cache and not isinstance(past_key_values, MiniMaxCache):
raise ValueError(
f"MiniMax uses cache of its own and is not compatible with `past_key_values` of type {type(past_key_values)}."
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
causal_mask = mask_function(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers:
if decoder_layer.layer_type == "full_attention":
input_attention_mask = causal_mask
else:
# lightning attention uses original attention_mask, and uses it only for the first step
input_attention_mask = attention_mask
hidden_states = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=input_attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
class MiniMaxForCausalLM(MixtralForCausalLM):
def forward(self, **super_kwargs):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, MiniMaxForCausalLM
>>> model = MiniMaxForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(**super_kwargs)
class MiniMaxForSequenceClassification(MixtralForSequenceClassification):
pass
class MiniMaxForTokenClassification(MixtralForTokenClassification):
pass
class MiniMaxForQuestionAnswering(MixtralForQuestionAnswering):
pass
__all__ = [
"MiniMaxConfig",
"MiniMaxPreTrainedModel",
"MiniMaxModel",
"MiniMaxForCausalLM",
"MiniMaxForSequenceClassification",
"MiniMaxForTokenClassification",
"MiniMaxForQuestionAnswering",
]