team-10/env/Lib/site-packages/huggingface_hub/inference/_providers/nscale.py
2025-08-02 07:34:44 +02:00

44 lines
1.8 KiB
Python

import base64
from typing import Any, Dict, Optional, Union
from huggingface_hub.hf_api import InferenceProviderMapping
from huggingface_hub.inference._common import RequestParameters, _as_dict
from ._common import BaseConversationalTask, TaskProviderHelper, filter_none
class NscaleConversationalTask(BaseConversationalTask):
def __init__(self):
super().__init__(provider="nscale", base_url="https://inference.api.nscale.com")
class NscaleTextToImageTask(TaskProviderHelper):
def __init__(self):
super().__init__(provider="nscale", base_url="https://inference.api.nscale.com", task="text-to-image")
def _prepare_route(self, mapped_model: str, api_key: str) -> str:
return "/v1/images/generations"
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
mapped_model = provider_mapping_info.provider_id
# Combine all parameters except inputs and parameters
parameters = filter_none(parameters)
if "width" in parameters and "height" in parameters:
parameters["size"] = f"{parameters.pop('width')}x{parameters.pop('height')}"
if "num_inference_steps" in parameters:
parameters.pop("num_inference_steps")
if "cfg_scale" in parameters:
parameters.pop("cfg_scale")
payload = {
"response_format": "b64_json",
"prompt": inputs,
"model": mapped_model,
**parameters,
}
return payload
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
response_dict = _as_dict(response)
return base64.b64decode(response_dict["data"][0]["b64_json"])