team-10/env/Lib/site-packages/torch/_dynamo/device_interface.py
2025-08-02 07:34:44 +02:00

450 lines
15 KiB
Python

# mypy: allow-untyped-defs
"""
Device abstraction layer for TorchDynamo and Inductor backends.
This module provides a unified interface for different hardware backends (CUDA, XPU,
CPU, MPS) through a common device interface. Key components include:
- DeviceInterface: Base class defining the common API for all device types
- Device-specific implementations: CudaInterface, XpuInterface, CpuInterface, MpsInterface
- Device registration system for managing available backends
- Worker APIs for multi-processing scenarios
- Stream and event management across different devices
- Device property caching for worker processes
The abstraction layer enables device-agnostic code in TorchDynamo while allowing
specialized implementations for each hardware backend's unique features.
"""
import time
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any, Callable, Optional, Union
import torch
get_cuda_stream: Optional[Callable[[int], int]]
if torch.cuda._is_compiled():
from torch._C import _cuda_getCurrentRawStream as get_cuda_stream
else:
get_cuda_stream = None
_device_t = Union[torch.device, str, int, None]
# Recording the device properties in the main process but used in worker process.
caching_worker_device_properties: dict[str, Any] = {}
caching_worker_current_devices: dict[str, int] = {}
class DeviceInterface:
"""
This is a simple device runtime interface for Inductor. It enables custom
backends to be integrated with Inductor in a device-agnostic semantic.
"""
class device:
def __new__(cls, device: _device_t):
raise NotImplementedError
class Event:
def __new__(cls, *args, **kwargs):
raise NotImplementedError(
"Event should be inherited from torch.Event, otherwise, it couldn't be captured by dynamo."
)
class Stream:
def __new__(cls, *args, **kwargs):
raise NotImplementedError(
"Stream should be inherited from torch.Stream, otherwise, it couldn't be captured by dynamo."
)
class Worker:
"""
Worker API to query device properties that will work in multi processing
workers that cannot use the GPU APIs (due to processing fork() and
initialization time issues). Properties are recorded in the main process
before we fork the workers.
"""
@staticmethod
def set_device(device: int):
raise NotImplementedError
@staticmethod
def current_device() -> int:
raise NotImplementedError
@staticmethod
def get_device_properties(device: _device_t = None):
raise NotImplementedError
@staticmethod
def current_device():
raise NotImplementedError
@staticmethod
def set_device(device: _device_t):
raise NotImplementedError
@staticmethod
def maybe_exchange_device(device: int) -> int:
raise NotImplementedError
@staticmethod
def exchange_device(device: int) -> int:
raise NotImplementedError
@staticmethod
def device_count():
raise NotImplementedError
@staticmethod
def is_available() -> bool:
raise NotImplementedError
@staticmethod
def stream(stream: torch.Stream):
raise NotImplementedError
@staticmethod
def current_stream():
raise NotImplementedError
@staticmethod
def set_stream(stream: torch.Stream):
raise NotImplementedError
@staticmethod
def _set_stream_by_id(stream_id: int, device_index: int, device_type: int):
raise NotImplementedError
@staticmethod
def get_raw_stream(device_idx: int) -> int:
raise NotImplementedError
@staticmethod
def synchronize(device: _device_t = None):
raise NotImplementedError
@classmethod
def get_device_properties(cls, device: _device_t = None):
return cls.Worker.get_device_properties(device)
@staticmethod
def get_compute_capability(device: _device_t = None):
raise NotImplementedError
@staticmethod
def is_bf16_supported(including_emulation: bool = False):
raise NotImplementedError
@classmethod
def is_dtype_supported(
cls, dtype: torch.dtype, including_emulation: bool = False
) -> bool:
return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation)
@staticmethod
def memory_allocated(device: _device_t = None) -> int:
raise NotImplementedError
class DeviceGuard:
"""
This class provides a context manager for device switching. This is a stripped
down version of torch.{device_name}.device.
The context manager changes the current device to the given device index
on entering the context and restores the original device on exiting.
The device is switched using the provided device interface.
"""
def __init__(
self, device_interface: type[DeviceInterface], index: Optional[int]
) -> None:
self.device_interface = device_interface
self.idx = index
self.prev_idx = -1
def __enter__(self):
if self.idx is not None:
self.prev_idx = self.device_interface.exchange_device(self.idx)
def __exit__(self, type: Any, value: Any, traceback: Any):
if self.idx is not None:
self.idx = self.device_interface.maybe_exchange_device(self.prev_idx)
return False
class CudaInterface(DeviceInterface):
device = torch.cuda.device
# register Event and Stream class into the backend interface
# make sure Event and Stream are implemented and inherited from the torch.Event and torch.Stream
Event = torch.cuda.Event
Stream = torch.cuda.Stream
class Worker:
@staticmethod
def set_device(device: int):
caching_worker_current_devices["cuda"] = device
@staticmethod
def current_device() -> int:
if "cuda" in caching_worker_current_devices:
return caching_worker_current_devices["cuda"]
return torch.cuda.current_device()
@staticmethod
def get_device_properties(device: _device_t = None):
if device is not None:
if isinstance(device, str):
device = torch.device(device)
assert device.type == "cuda"
if isinstance(device, torch.device):
device = device.index
if device is None:
device = CudaInterface.Worker.current_device()
if "cuda" not in caching_worker_device_properties:
device_prop = [
torch.cuda.get_device_properties(i)
for i in range(torch.cuda.device_count())
]
caching_worker_device_properties["cuda"] = device_prop
return caching_worker_device_properties["cuda"][device]
current_device = staticmethod(torch.cuda.current_device)
set_device = staticmethod(torch.cuda.set_device)
device_count = staticmethod(torch.cuda.device_count)
stream = staticmethod(torch.cuda.stream) # type: ignore[assignment]
current_stream = staticmethod(torch.cuda.current_stream)
set_stream = staticmethod(torch.cuda.set_stream) # type: ignore[assignment]
_set_stream_by_id = staticmethod(torch.cuda._set_stream_by_id) # type: ignore[assignment]
synchronize = staticmethod(torch.cuda.synchronize)
get_device_properties = staticmethod(torch.cuda.get_device_properties) # type: ignore[assignment]
get_raw_stream = staticmethod(get_cuda_stream) # type: ignore[assignment, arg-type]
exchange_device = staticmethod(torch.cuda._exchange_device) # type: ignore[arg-type]
maybe_exchange_device = staticmethod(torch.cuda._maybe_exchange_device) # type: ignore[arg-type]
memory_allocated = staticmethod(torch.cuda.memory_allocated)
is_bf16_supported = staticmethod(torch.cuda.is_bf16_supported) # type: ignore[arg-type]
# Can be mock patched by @patch decorator.
@staticmethod
def is_available() -> bool:
return torch.cuda.is_available()
@staticmethod
def get_compute_capability(device: _device_t = None):
if torch.version.hip is None:
major, min = torch.cuda.get_device_capability(device)
return major * 10 + min
else:
return torch.cuda.get_device_properties(device).gcnArchName.split(":", 1)[0]
get_xpu_stream: Optional[Callable[[int], int]]
if torch.xpu._is_compiled():
from torch._C import _xpu_getCurrentRawStream as get_xpu_stream
else:
get_xpu_stream = None
class XpuInterface(DeviceInterface):
device = torch.xpu.device
Event = torch.xpu.Event
Stream = torch.xpu.Stream
class Worker:
@staticmethod
def set_device(device: int):
caching_worker_current_devices["xpu"] = device
@staticmethod
def current_device() -> int:
if "xpu" in caching_worker_current_devices:
return caching_worker_current_devices["xpu"]
return torch.xpu.current_device()
@staticmethod
def get_device_properties(device: _device_t = None):
if device is not None:
if isinstance(device, str):
device = torch.device(device)
assert device.type == "xpu"
if isinstance(device, torch.device):
device = device.index
if device is None:
device = XpuInterface.Worker.current_device()
if "xpu" not in caching_worker_device_properties:
device_prop = [
torch.xpu.get_device_properties(i)
for i in range(torch.xpu.device_count())
]
caching_worker_device_properties["xpu"] = device_prop
return caching_worker_device_properties["xpu"][device]
current_device = staticmethod(torch.xpu.current_device)
set_device = staticmethod(torch.xpu.set_device)
device_count = staticmethod(torch.xpu.device_count)
stream = staticmethod(torch.xpu.stream) # type: ignore[assignment]
current_stream = staticmethod(torch.xpu.current_stream)
set_stream = staticmethod(torch.xpu.set_stream) # type: ignore[assignment]
_set_stream_by_id = staticmethod(torch.xpu._set_stream_by_id) # type: ignore[assignment]
synchronize = staticmethod(torch.xpu.synchronize)
get_device_properties = staticmethod(torch.xpu.get_device_properties) # type: ignore[assignment]
get_raw_stream = staticmethod(get_xpu_stream) # type: ignore[assignment, arg-type]
exchange_device = staticmethod(torch.xpu._exchange_device) # type: ignore[arg-type]
maybe_exchange_device = staticmethod(torch.xpu._maybe_exchange_device) # type: ignore[arg-type]
memory_allocated = staticmethod(torch.xpu.memory_allocated)
# Can be mock patched by @patch decorator.
@staticmethod
def is_available() -> bool:
return torch.xpu.is_available()
@staticmethod
def get_compute_capability(device: _device_t = None):
cc = torch.xpu.get_device_capability(device)
return cc
@staticmethod
def is_bf16_supported(including_emulation: bool = False) -> bool:
return torch.xpu.is_bf16_supported()
@dataclass
class CpuDeviceProperties:
multi_processor_count: int
class CpuInterface(DeviceInterface):
class Event(torch.Event):
def __init__(self, enable_timing=True):
self.time = 0.0
def elapsed_time(self, end_event) -> float:
return (end_event.time - self.time) * 1000
def record(self, stream=None):
self.time = time.perf_counter()
@staticmethod
def is_available() -> bool:
return True
@staticmethod
def is_bf16_supported(including_emulation: bool = False):
return True
@staticmethod
def get_compute_capability(device: _device_t = None) -> str:
return ""
@staticmethod
def get_raw_stream(device_idx) -> int:
return 0
@staticmethod
def current_device():
return 0
@staticmethod
def synchronize(device: _device_t = None):
pass
class Worker:
@staticmethod
def get_device_properties(device: _device_t = None):
import multiprocessing
cpu_count = multiprocessing.cpu_count()
return CpuDeviceProperties(cpu_count)
class MpsInterface(DeviceInterface):
@staticmethod
def is_bf16_supported(including_emulation: bool = False) -> bool:
return torch.backends.mps.is_macos_or_newer(14, 0)
@classmethod
def is_dtype_supported(
cls, dtype: torch.dtype, including_emulation: bool = False
) -> bool:
if dtype == torch.float64:
return False
return dtype != torch.bfloat16 or cls.is_bf16_supported(including_emulation)
@staticmethod
def is_available() -> bool:
return torch.backends.mps.is_available()
@staticmethod
def current_device():
return 0
@staticmethod
def get_compute_capability(device: _device_t = None) -> str:
return ""
@staticmethod
def synchronize(device: _device_t = None):
torch.mps.synchronize()
class Worker:
@staticmethod
def get_device_properties(device: _device_t = None):
return {}
@staticmethod
def current_device():
return 0
device_interfaces: dict[str, type[DeviceInterface]] = {}
_device_initialized = False
def register_interface_for_device(
device: Union[str, torch.device], device_interface: type[DeviceInterface]
):
if isinstance(device, torch.device):
device = device.type
device_interfaces[device] = device_interface
def get_interface_for_device(device: Union[str, torch.device]) -> type[DeviceInterface]:
if isinstance(device, torch.device):
device = device.type
if not _device_initialized:
init_device_reg()
if device in device_interfaces:
return device_interfaces[device]
raise NotImplementedError(f"No interface for device {device}")
def get_registered_device_interfaces() -> Iterable[tuple[str, type[DeviceInterface]]]:
if not _device_initialized:
init_device_reg()
return device_interfaces.items()
def init_device_reg():
global _device_initialized
register_interface_for_device("cuda", CudaInterface)
for i in range(torch.cuda.device_count()):
register_interface_for_device(f"cuda:{i}", CudaInterface)
register_interface_for_device("xpu", XpuInterface)
for i in range(torch.xpu.device_count()):
register_interface_for_device(f"xpu:{i}", XpuInterface)
register_interface_for_device("cpu", CpuInterface)
register_interface_for_device("mps", MpsInterface)
_device_initialized = True