team-10/env/Lib/site-packages/torch/_inductor/debug.py
2025-08-02 07:34:44 +02:00

964 lines
32 KiB
Python

import collections
import contextlib
import copy
import dataclasses
import functools
import io
import itertools
import json
import logging
import os
import os.path
import pickle
import pstats
import shutil
import subprocess
import traceback
from collections.abc import Iterator
from typing import Any, Callable, IO, Optional, Union
from unittest.mock import patch
import torch
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
from torch import fx as fx
from torch._dynamo.repro.after_aot import save_graph_repro
from torch._dynamo.utils import get_debug_dir
from torch._logging import getArtifactLogger
from torch.fx.graph_module import GraphModule
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.fx.passes.tools_common import legalize_graph
from torch.types import FileLike
from torch.utils._ordered_set import OrderedSet
from torch.utils._pytree import tree_map
from . import config, ir # noqa: F811, this is needed
from .scheduler import (
BaseSchedulerNode,
FusedSchedulerNode,
NopKernelSchedulerNode,
OutputNode,
SchedulerNode,
)
from .virtualized import V
log = logging.getLogger(__name__)
ir_pre_fusion_log = getArtifactLogger(__name__, "ir_pre_fusion")
ir_post_fusion_log = getArtifactLogger(__name__, "ir_post_fusion")
SchedulerNodeList = list[Any]
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
@functools.lru_cache(None)
def has_dot() -> bool:
try:
subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE)
return True
except subprocess.SubprocessError:
return False
def draw_buffers(
nodes: list[BaseSchedulerNode],
print_graph: bool = False,
fname: Optional[str] = None,
) -> None:
"""
Draw a graph in fname.svg.
"""
if not has_dot():
log.warning("draw_buffers() requires `graphviz` package")
return
if fname is None:
fname = get_graph_being_compiled()
graph = create_fx_from_snodes(nodes)
for node in graph.nodes:
if "fusion_meta" not in node.meta:
continue
group = node.meta["fusion_meta"].group
if isinstance(group, tuple):
if isinstance(group[1], int):
group = (group[1],)
else:
group = group[1]
# gather meta data
dtype = None
if isinstance(node, ir.ComputedBuffer):
dtype = node.data.dtype
metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type]
node.meta["tensor_meta"] = metadata
if print_graph:
print(graph)
gm = GraphModule({}, graph)
legalize_graph(gm)
gm.graph.lint()
draw_graph(
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
)
def create_fx_from_snodes(snodes: list[BaseSchedulerNode]) -> fx.Graph:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
def get_fake_func(name: str) -> Callable[..., int]:
def func1(*args: Any) -> int:
return 0
func1.__name__ = name
return func1
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
buf_to_fx_node = {}
node_to_fx_node = {}
graph = torch.fx.Graph()
first_node = None
outputs = []
group: Any = None
# create call_function node for each Buffer and Kernel
for snode in snodes:
if snode.is_extern():
node_type = "extern"
group = node_type
elif snode.is_template():
node_type = "template"
group = node_type
elif isinstance(snode, NopKernelSchedulerNode):
node_type = "nop"
group = node_type
elif isinstance(snode, SchedulerNode):
node_type = "compute"
group = snode.group
elif isinstance(snode, FusedSchedulerNode):
node_type = "fused"
group = snode.group
else:
raise RuntimeError("Unknown node type")
fused_name = torch._inductor.utils.get_fused_kernel_name(
snode.get_nodes(), "original_aten"
)
func_name = f"{node_type}: {fused_name}"
node_func = get_fake_func(func_name)
kwargs = {}
if hasattr(snode, "get_device"):
kwargs = {"device": snode.get_device()}
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) # type: ignore[arg-type]
def in_output(snode: Union[BaseSchedulerNode, FusedSchedulerNode]) -> bool:
if isinstance(snode, FusedSchedulerNode):
return any(in_output(x) for x in snode.snodes)
return any(
isinstance(user.node, OutputNode)
for buf in snode.get_outputs()
for user in buf.users
)
if in_output(snode):
outputs.append(fx_node)
name = snode.get_name()
fx_node.name = name
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
node_to_fx_node[name] = fx_node
for buf in snode.get_outputs():
buf_to_fx_node[buf.get_name()] = fx_node
if first_node is None:
first_node = fx_node
# create edges between nodes
for snode in snodes:
name = snode.get_name()
deps = snode.read_writes.reads
fx_node = node_to_fx_node[name]
new_args = []
for dep in deps:
if dep.name in buf_to_fx_node:
dep_node = buf_to_fx_node[dep.name]
else:
with graph.inserting_before(first_node):
dep_node = graph.placeholder(dep.name)
buf_to_fx_node[dep.name] = dep_node
if dep_node == fx_node: # to avoid cycles
continue
new_args.append(dep_node)
fx_node.args = tuple(new_args)
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
return graph
def update_orig_fx_node_name_to_buf_name(
nodes: Optional[SchedulerNodeList],
node_name_to_buf_name: dict[str, str],
parent_buf_name: Optional[str] = None,
n_origins: int = 0,
) -> None:
if nodes is None:
return
for node in nodes:
# for FusedSchedulerNode, traverse recursively into get_nodes()
buf_name = node.get_name()
children_nodes = node.get_nodes()
if children_nodes is not None and len(children_nodes) > 1:
update_orig_fx_node_name_to_buf_name(
children_nodes,
node_name_to_buf_name,
buf_name if parent_buf_name is None else parent_buf_name,
)
continue
else:
assert len(children_nodes) == 1 and children_nodes[0] == node
ir_node = node.node
if ir_node is None or ir_node.origins is None:
continue
for origin in ir_node.origins:
node_name = origin.name
# when buf1 and buf2 both have origin=node1
# we draw node1 according to buf1
if node_name not in node_name_to_buf_name:
node_name_to_buf_name[node_name] = (
buf_name if parent_buf_name is None else parent_buf_name
)
def get_node_name_to_buf_meta(
node_name_to_buf_name: dict[str, str],
) -> dict[str, BufMeta]:
buf_name_to_n_node = {}
for node_name, buf_name in node_name_to_buf_name.items():
if buf_name not in buf_name_to_n_node:
buf_name_to_n_node[buf_name] = OrderedSet([node_name])
else:
buf_name_to_n_node[buf_name].add(node_name)
node_name_to_buf_meta = {}
for node_name, buf_name in node_name_to_buf_name.items():
n_node = len(buf_name_to_n_node[buf_name])
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
return node_name_to_buf_meta
def annotate_orig_fx_with_snodes(
gm: torch.fx.GraphModule,
snodes: SchedulerNodeList,
) -> None:
"""
Creates a FX Graph from a list of SchedulerNode objects.
"""
node_name_to_buf_name: dict[str, str] = {}
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
if node_name_to_buf_name is None:
return
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
for node in gm.graph.nodes:
if node.name in node_name_to_buf_meta:
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
@contextlib.contextmanager
def enable_aot_logging() -> Iterator[None]:
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
import torch._functorch.aot_autograd
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
stack = contextlib.ExitStack()
if not compile_debug:
try:
yield
finally:
stack.close()
return
# Enable all graphs to be logged to a file by setting the flags to True
# and the log level of the file logger to DEBUG
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
path = os.path.join(get_debug_dir(), "torchinductor")
os.makedirs(path, exist_ok=True)
fh = logging.FileHandler(
os.path.join(
path,
f"aot_{get_aot_graph_name()}_debug.log",
)
)
fh.setLevel(logging.DEBUG)
fh.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(fh)
try:
yield
finally:
log.removeHandler(fh)
stack.close()
# Used for provenance tracking
# They are not stored in DebugContext because they are not set in
# _inductor_triton_kernel_to_post_grad_node_info's Debug Context
_inductor_post_to_pre_grad_nodes: dict[str, Any] = {}
_pre_grad_graph_id: Optional[int] = None
class DebugContext:
_counter = itertools.count()
# Used for provenance tracking
_inductor_triton_kernel_to_post_grad_node_info: dict[str, list[str]] = {}
@staticmethod
def create_debug_dir(folder_name: str) -> Optional[str]:
debug_dir = config.trace.debug_dir or get_debug_dir()
for n in DebugContext._counter:
dirname = os.path.join(
debug_dir,
"torchinductor",
f"{folder_name}.{n}",
)
if not os.path.exists(dirname):
os.makedirs(dirname)
return dirname
return None
def __init__(self) -> None:
self._prof = None
self._path = None
self._stack = contextlib.ExitStack()
def copy(self, new_path: str) -> None:
if not self._path:
return
assert new_path.endswith(".debug"), new_path
from filelock import FileLock
try:
with FileLock(f"{new_path}.lock"):
if os.path.exists(new_path):
shutil.rmtree(new_path)
shutil.copytree(self._path, new_path)
except OSError:
log.warning(
"Failed to copy debug files from %s to %s", self._path, new_path
)
def fopen(
self,
filename: str,
write_mode: str = "w",
*args: Any,
**kwargs: Any,
) -> IO[Any]:
assert self._path
return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)
@contextlib.contextmanager
def fopen_context(
self,
filename: str,
write_mode: str = "w",
*args: Any,
**kwargs: Any,
) -> Iterator[IO[Any]]:
assert self._path
with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
yield f
def filename(self, suffix: str) -> str:
assert self._path
return os.path.join(self._path, suffix)
def upload_tar(self) -> None:
if config.trace.upload_tar is not None:
import tarfile
assert self._path
tar_file = os.path.join(
self._path, f"{os.path.basename(self._path)}.tar.gz"
)
with tarfile.open(tar_file, "w:gz") as tar:
tar.add(self._path, arcname=os.path.basename(self._path))
config.trace.upload_tar(tar_file)
def __enter__(self) -> None:
if config.debug:
log = logging.getLogger("torch._dynamo")
prev_level = log.level
log.setLevel(logging.DEBUG)
def reset_log_level(level: Any) -> None:
log.setLevel(level)
self._stack.callback(reset_log_level, prev_level)
self._stack.enter_context(V.set_debug_handler(self))
if not config.trace.enabled:
return
self._path = self.create_debug_dir(get_aot_graph_name()) # type: ignore[assignment]
if config.trace.debug_log:
self._setup_log_capture("debug.log", logging.DEBUG)
if config.trace.info_log:
self._setup_log_capture("info.log", logging.INFO)
def _setup_log_capture(
self,
filename: str,
level: int,
) -> None:
log = logging.getLogger("torch._inductor")
fd = self._stack.enter_context(self.fopen(filename))
ch = logging.StreamHandler(fd)
ch.setLevel(level)
ch.setFormatter(
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
)
log.addHandler(ch)
log.setLevel(min(log.level, level))
self._stack.callback(log.removeHandler, ch)
def __exit__(
self,
exc_type: Optional[type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[Any],
) -> None:
if self._prof:
self._prof.disable()
self._save_profile_data()
if self._path:
self.upload_tar()
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
self._stack.close()
def _save_profile_data(self) -> None:
assert self._prof
self._prof.dump_stats(self.filename("compile.prof"))
with self.fopen("compile.stats") as fd:
stats = pstats.Stats(self._prof, stream=fd)
stats.strip_dirs()
stats.sort_stats("cumtime")
stats.print_stats(100)
stats.sort_stats("tottime")
stats.print_stats(100)
def __getattr__(self, name: str) -> Optional[Callable[..., None]]:
if config.trace.enabled and getattr(config.trace, name):
try:
return getattr(DebugFormatter(self), name)
except Exception:
log.warning("Ignoring exception in debug code", exc_info=True)
return None
else:
def ignored(*args: Any, **kwargs: Any) -> None:
pass
return ignored
class DebugFormatter:
def __init__(self, handler: DebugContext) -> None:
self.fopen = handler.fopen
self.fopen_context = handler.fopen_context
self.filename = handler.filename
self.handler = handler
def fx_graph(
self,
gm: torch.fx.GraphModule,
inputs: list[torch.Tensor],
) -> None:
with self.fopen("fx_graph_runnable.py") as fd:
save_dir = None
if torch._inductor.config.trace.save_real_tensors:
inputs = torch._subclasses.fake_utils.try_convert_fake_to_real(inputs)
save_dir = os.path.dirname(fd.name)
# dont try to use stable hash torchinductor compilation if saving real tensors
# and avoid recursively trying to save real tensors inside of the inductor compilation
# regardless
stable_hash = torch._inductor.config.trace.save_real_tensors
with torch._inductor.config.patch(
{"trace.enabled": False, "trace.save_real_tensors": False}
):
save_graph_repro(
fd,
gm,
inputs,
"inductor",
save_dir=save_dir,
stable_hash=stable_hash,
)
with self.fopen("fx_graph_readable.py") as fd:
fd.write(gm.print_readable(print_output=False))
def fx_graph_transformed(
self,
gm: torch.fx.GraphModule,
inputs: list[torch.Tensor],
) -> None:
with self.fopen("fx_graph_transformed.py") as fd:
fd.write(gm.print_readable(print_output=False))
def ir_pre_fusion(self, nodes: SchedulerNodeList) -> None:
with self.fopen("ir_pre_fusion.txt") as fd:
fd.write(self._write_ir(nodes))
def ir_post_fusion(self, nodes: SchedulerNodeList) -> None:
with self.fopen("ir_post_fusion.txt") as fd:
fd.write(self._write_ir(nodes))
@staticmethod
def _write_ir(nodes: SchedulerNodeList) -> str:
buf = io.StringIO()
for node in nodes:
buf.write(node.debug_str())
buf.write("\n\n\n")
return buf.getvalue()
def graph_diagram(self, nodes: SchedulerNodeList) -> None:
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
def draw_orig_fx_graph(
self,
gm: torch.fx.GraphModule,
nodes: SchedulerNodeList,
) -> None:
annotate_orig_fx_with_snodes(gm, nodes)
draw_graph(
gm,
fname=self.filename("orig_fx_graph_diagram.svg"),
clear_meta=False,
prog=GRAPHVIZ_COMMAND_SCALABLE,
parse_stack_trace=True,
dot_graph_shape=config.trace.dot_graph_shape,
)
def output_code(self, filename: str) -> None:
shutil.copy(filename, self.filename("output_code.py"))
def log_inductor_triton_kernel_to_post_grad_node_info(
self, filename: str = "inductor_triton_kernel_to_post_grad_nodes.json"
) -> tuple[dict[str, list[str]], dict[str, Any]]:
debug_info = {}
with self.fopen(filename, "w") as fd:
log.info("Writing provenance tracing debugging info to %s", fd.name)
debug_info = DebugContext._inductor_triton_kernel_to_post_grad_node_info
json.dump(debug_info, fd)
node_mapping = {}
if _pre_grad_graph_id:
with self.fopen(
"inductor_provenance_tracking_node_mappings.json", "w"
) as fd:
node_mapping = create_node_mapping(
_pre_grad_graph_id, _inductor_post_to_pre_grad_nodes, debug_info
)
json.dump(node_mapping, fd)
return debug_info, node_mapping
def log_autotuning_results(
self,
name: str,
input_nodes: list[ir.IRNode],
timings: dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821
elapse: float,
precompile_elapse: float,
) -> None:
from .ir import FixedLayout
def build_node_info(node: ir.IRNode) -> dict[str, str]:
if hasattr(node, "name"):
node_name = node.name
else:
node_name = ""
node_info = {
"name": node_name,
"type": type(node).__name__,
}
try:
layout = node.get_output_spec()
if isinstance(layout, FixedLayout):
offset = 0
try:
offset = int(layout.offset)
except Exception:
try:
offset = V.graph.sizevars.size_hint(
layout.offset, fallback=0
)
except Exception:
pass
static_layout = FixedLayout(
layout.device,
dtype=layout.dtype,
size=[*V.graph.sizevars.size_hints(layout.size)],
stride=[*V.graph.sizevars.size_hints(layout.stride)],
offset=offset,
)
node_info["layout"] = str(static_layout)
else:
node_info["layout"] = str(layout)
except Exception:
pass
try:
node_info["dtype"] = str(node.get_dtype())
except Exception:
pass
try:
node_info["device"] = str(node.get_device())
except Exception:
pass
try:
node_info["stride"] = str(
V.graph.sizevars.size_hints(node.get_stride())
)
except Exception:
pass
try:
node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size())) # type: ignore[arg-type]
except Exception:
pass
try:
node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
except Exception:
pass
if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
node_info["data"] = build_node_info(node.data)
return node_info
general_properties = {
"op_name": name,
"cuda_device_name": torch.cuda.get_device_name(),
"cuda_device_count": torch.cuda.device_count(),
"input_nodes": [build_node_info(node) for node in input_nodes],
"autotuning_time": elapse,
"precompile_time": precompile_elapse,
}
with self.fopen_context(
"autotuning_result_json_list.txt", "at", encoding="utf-8"
) as fd:
for caller, time in timings.items():
info_dict = dict(caller.info_dict())
info_dict.update(general_properties)
info_dict["benchmark_result"] = time
json.dump(info_dict, fd)
fd.write("\n")
def log_ir_pre_fusion(nodes: SchedulerNodeList) -> None:
if ir_pre_fusion_log.isEnabledFor(logging.INFO):
ir_pre_fusion_log.info("BEFORE FUSION\n%s", DebugFormatter._write_ir(nodes))
V.debug.ir_pre_fusion(nodes)
def log_ir_post_fusion(nodes: SchedulerNodeList) -> None:
if ir_post_fusion_log.isEnabledFor(logging.INFO):
ir_post_fusion_log.info("AFTER FUSION\n%s", DebugFormatter._write_ir(nodes))
V.debug.ir_post_fusion(nodes)
@dataclasses.dataclass
class TensorMetadataHolder:
tensor_metadata: TensorMetadata
device: torch.device
save_args_cnt = itertools.count()
def create_node_mapping(
pre_grad_graph_id: int,
post_to_pre_grad_nodes_json: dict[str, Any],
triton_kernel_to_post_grad_json: dict[str, Any],
) -> dict[str, dict[str, Any]]:
"""Create bidirectional mappings between:
- pre_grad graph nodes and post_grad graph code nodes, and vice versa
- triton kernel name and post_grad graph code nodes, and vice versa
"""
# return a dummy dict if there's any error
empty_return: dict[str, dict[str, Any]] = {
"preToPost": {},
"postToPre": {},
"cppCodeToPost": {},
"postToCppCode": {},
}
log.info("Creating node mappings for provenance tracking")
if not isinstance(post_to_pre_grad_nodes_json, dict):
log.error("Provenance tacking error: post_to_pre_grad_nodes_json is not a dict")
return empty_return
if not isinstance(triton_kernel_to_post_grad_json, dict):
log.error(
"Provenance tacking error: triton_kernel_to_post_grad_json is not a dict"
)
return empty_return
if not isinstance(pre_grad_graph_id, int):
log.error("Provenance tacking error: pre_grad_graph_id is not an int")
return empty_return
pre_to_post: dict[str, Any] = collections.defaultdict(OrderedSet)
post_to_pre: dict[str, Any] = collections.defaultdict(OrderedSet)
post_to_cpp_code: dict[str, Any] = collections.defaultdict(OrderedSet)
try:
for outer_key, node_array in triton_kernel_to_post_grad_json.items():
if not isinstance(node_array, list):
log.error(
"Provenance tacking error: triton_kernel_to_post_grad_json value is not a list"
)
return empty_return
for curr_node in node_array:
post_to_cpp_code[curr_node].add(outer_key)
def check_format(node: dict[str, Any]) -> bool:
if not isinstance(node, dict):
log.error(
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json is not a dict"
)
return False
if "graph_id" not in node or "name" not in node or "from_node" not in node:
log.error(
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json has wrong format"
)
return False
return True
for outer_key, node_array in post_to_pre_grad_nodes_json.items():
if not isinstance(node_array, list):
log.error(
"Provenance tacking error: post_to_pre_grad_nodes_json value is not a list"
)
return empty_return
for node in node_array:
if not check_format(node):
return empty_return
# Check the current node first
if node.get("graph_id") == pre_grad_graph_id:
pre_to_post[node["name"]].add(outer_key)
post_to_pre[outer_key].add(node["name"])
# Check nested from_node array recursively, add node with the right graph_id to the map
stack = [(n, outer_key) for n in node.get("from_node", [])]
while stack:
current_node, parent_key = stack.pop()
if not check_format(current_node):
return empty_return
if current_node.get("graph_id") == pre_grad_graph_id:
pre_to_post[current_node["name"]].add(parent_key)
post_to_pre[parent_key].add(current_node["name"])
stack.extend(
(n, parent_key) for n in current_node.get("from_node", [])
)
def convert_sets_to_lists(d: dict[str, Any]) -> None:
for key in d:
d[key] = list(d[key])
d = dict(d)
# convert to list because set is not JSON serializable
convert_sets_to_lists(pre_to_post)
convert_sets_to_lists(post_to_pre)
convert_sets_to_lists(post_to_cpp_code)
return {
"preToPost": pre_to_post,
"postToPre": post_to_pre,
"cppCodeToPost": triton_kernel_to_post_grad_json,
"postToCppCode": post_to_cpp_code,
}
except Exception as e:
# Since this is just logging code, it should never interfere with regular
# program execution, so we use this try-except to guard against any error
log.error("Unexpected error in create_node_mapping: %s", e)
log.error("post_to_pre_grad_nodes_json: %s", post_to_pre_grad_nodes_json)
log.error(
"triton_kernel_to_post_grad_json: %s", triton_kernel_to_post_grad_json
)
log.error("pre_grad_graph_id: %s", pre_grad_graph_id)
log.error(traceback.format_exc())
return empty_return
def save_args_for_compile_fx_inner(*args: Any, **kwargs: Any) -> None:
"""
This function is used to save arguments for a compile_fx_inner function call
to the file system. Later on one can replay the compile_fx_inner call
with the saved arguments using load_args_and_run_compile_fx_inner.
"""
folder = "/tmp/inductor_saved_args"
if not os.path.exists(folder):
os.mkdir(folder)
def handle_tensor(x: Any) -> Any:
"""
Pickle FakeTensor will result in error:
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
Convert all Tensor to metadata. This may also makes pickle faster.
"""
if isinstance(x, torch.Tensor):
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
else:
return x
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
fn_name = "compile_fx_inner"
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
with open(path, "wb") as f:
pickle.dump((args_to_save, kwargs_to_save), f)
if log.isEnabledFor(logging.DEBUG):
message = f"""
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
run the following:
from torch._inductor.debug import load_args_and_run_compile_fx_inner
load_args_and_run_compile_fx_inner({path!r})
"""
# call print rather than log.debug. log.debug will print message
# prefix for each line which makes the code snippet harder to be
# copied.
# Not a big deal since the code is already been guarded by checking
# the log level.
print(message)
def load_args_and_run_compile_fx_inner(path: str) -> Any:
from torch._inductor.compile_fx import compile_fx_inner
with open(path, "rb") as f:
args, kwargs = pickle.load(f)
def handle_tensor(x: Any) -> Any:
if isinstance(x, TensorMetadataHolder):
return torch._dynamo.testing.rand_strided(
x.tensor_metadata.shape,
x.tensor_metadata.stride,
x.tensor_metadata.dtype,
x.device,
)
else:
return x
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
with fake_mode, config.patch("save_args", False):
args, kwargs = tree_map(handle_tensor, (args, kwargs))
return compile_fx_inner(*args, **kwargs)
def aot_inductor_minifier_wrapper(
func: Callable[..., str],
exported_program: torch.export.ExportedProgram,
*,
inductor_configs: dict[str, Any],
package_path: Optional[FileLike] = None,
) -> str:
from torch._dynamo.debug_utils import AccuracyError
from torch._dynamo.repro.aoti import dump_to_minify
from torch._inductor import config
from torch._inductor.compile_fx import _aoti_flatten_inputs
use_minifier = config.aot_inductor.dump_aoti_minifier
gm = exported_program.module()
assert isinstance(gm, torch.fx.GraphModule)
args, kwargs = exported_program.example_inputs
try:
if use_minifier and config.aot_inductor.repro_level == 3:
# Always dump the original module in case we have segfaults
dump_to_minify(
exported_program,
"aot_inductor",
options=inductor_configs,
)
if use_minifier and config.aot_inductor.repro_level == 4:
# Check for accuracy
# We will first flatten the inputs before compiling and checking for accuracy.
# This is ok because we will flatten the inputs in the minifier anyway.
gm_copy = copy.deepcopy(gm)
example_inputs_copy = copy.deepcopy(exported_program.example_inputs)
config_copy = copy.deepcopy(inductor_configs)
flat_example_inputs, config_copy = _aoti_flatten_inputs(
gm_copy,
example_inputs_copy[0],
example_inputs_copy[1],
options=config_copy,
)
tuple_inputs = tuple(flat_example_inputs)
flattened_ep = torch.export.export(gm_copy, tuple_inputs, strict=False)
func(
flattened_ep.module(),
tuple_inputs,
inductor_configs=config_copy,
package_path=package_path,
load_and_run=True,
check_accuracy="accuracy",
)
return func(
gm,
args,
kwargs,
inductor_configs=inductor_configs,
package_path=package_path,
load_and_run=use_minifier,
)
except AccuracyError as e:
dump_to_minify(
exported_program,
"aot_inductor_accuracy",
command="minify",
options=inductor_configs,
)
log.warning("Accuracy failed")
raise e
except Exception as e:
if use_minifier:
command = "minify"
if config.aot_inductor.repro_level == 1:
command = "run"
dump_to_minify(
exported_program,
"aot_inductor",
command=command,
options=inductor_configs,
)
raise e