team-10/env/Lib/site-packages/transformers/models/phi/modular_phi.py
2025-08-02 07:34:44 +02:00

298 lines
11 KiB
Python

from typing import Callable, Optional
import torch
import torch.nn as nn
from ...cache_utils import Cache, DynamicCache
from ...masking_utils import create_causal_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ..clip.modeling_clip import CLIPMLP
from ..llama.modeling_llama import (
LlamaAttention,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaModel,
LlamaRotaryEmbedding,
apply_rotary_pos_emb,
eager_attention_forward, # copied from Llama
)
from .configuration_phi import PhiConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/phi-1"
_CONFIG_FOR_DOC = "PhiConfig"
class PhiAttention(LlamaAttention):
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
del self.o_proj
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor)
self.qk_layernorm = config.qk_layernorm
if self.qk_layernorm:
self.q_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
self.k_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if self.qk_layernorm:
query_states = self.q_layernorm(query_states)
key_states = self.k_layernorm(key_states)
cos, sin = position_embeddings
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_ndims],
query_states[..., self.rotary_ndims :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_ndims],
key_states[..., self.rotary_ndims :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.dense(attn_output)
return attn_output, attn_weights
class PhiMLP(CLIPMLP):
pass
class PhiDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__()
self.self_attn = PhiAttention(config, layer_idx=layer_idx)
self.mlp = PhiMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_outputs, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class PhiRotaryEmbedding(LlamaRotaryEmbedding):
pass
class PhiModel(LlamaModel):
def __init__(self, config: PhiConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
del self.norm
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states) # diff with Llama
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class PhiForCausalLM(LlamaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
class PhiForSequenceClassification(LlamaForSequenceClassification):
pass
class PhiForTokenClassification(LlamaForTokenClassification):
pass
__all__ = [
"PhiPreTrainedModel", # noqa: F822
"PhiModel",
"PhiForCausalLM",
"PhiForSequenceClassification",
"PhiForTokenClassification",
]