team-10/venv/Lib/site-packages/transformers/models/arcee/modular_arcee.py
2025-08-02 02:00:33 +02:00

225 lines
9.9 KiB
Python

# coding=utf-8
# Copyright 2025 Arcee AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Arcee model."""
from transformers.utils import auto_docstring, logging
from ..llama.configuration_llama import LlamaConfig
from ..llama.modeling_llama import (
LlamaForCausalLM,
LlamaForQuestionAnswering,
LlamaForSequenceClassification,
LlamaForTokenClassification,
)
from ..nemotron.modeling_nemotron import NemotronMLP
logger = logging.get_logger(__name__)
class ArceeConfig(LlamaConfig):
r"""
This is the configuration class to store the configuration of a [`ArceeModel`]. It is used to instantiate an Arcee
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the AFM-4.5B-Base.
Pre-trained weights are available at
[arcee-ai/AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B)
and were used to build the examples below.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Arcee model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ArceeModel`]
hidden_size (`int`, *optional*, defaults to 2560):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 18432):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with. AFM-4.5B-Base supports up to 16384 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 128000):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 128001):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'yarn'. The original max position embeddings used during pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn'. The scaling factor to be applied on the attention computation. If unspecified,
it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import ArceeModel, ArceeConfig
>>> # Initializing an Arcee AFM-4.5B-Base style configuration
>>> configuration = ArceeConfig()
>>> # Initializing a model from the AFM-4.5B-Base style configuration
>>> model = ArceeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "arcee"
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=32000,
hidden_size=2560,
intermediate_size=18432,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="relu2",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=128000,
eos_token_id=128001,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
rms_norm_eps=rms_norm_eps,
use_cache=use_cache,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
attention_bias=attention_bias,
attention_dropout=attention_dropout,
mlp_bias=mlp_bias,
head_dim=head_dim,
**kwargs,
)
del self.pretraining_tp
class ArceeMLP(NemotronMLP):
pass
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForCausalLM(LlamaForCausalLM):
pass
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForSequenceClassification(LlamaForSequenceClassification):
pass
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForQuestionAnswering(LlamaForQuestionAnswering):
pass
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
class ArceeForTokenClassification(LlamaForTokenClassification):
pass
__all__ = [
"ArceeConfig",
"ArceeForCausalLM",
"ArceeForQuestionAnswering",
"ArceeForSequenceClassification",
"ArceeForTokenClassification",
"ArceeModel", # noqa: F822
"ArceePreTrainedModel", # noqa: F822
]