225 lines
9.9 KiB
Python
225 lines
9.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 Arcee AI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch Arcee model."""
|
|
|
|
from transformers.utils import auto_docstring, logging
|
|
|
|
from ..llama.configuration_llama import LlamaConfig
|
|
from ..llama.modeling_llama import (
|
|
LlamaForCausalLM,
|
|
LlamaForQuestionAnswering,
|
|
LlamaForSequenceClassification,
|
|
LlamaForTokenClassification,
|
|
)
|
|
from ..nemotron.modeling_nemotron import NemotronMLP
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class ArceeConfig(LlamaConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`ArceeModel`]. It is used to instantiate an Arcee
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the AFM-4.5B-Base.
|
|
|
|
Pre-trained weights are available at
|
|
[arcee-ai/AFM-4.5B](https://huggingface.co/arcee-ai/AFM-4.5B)
|
|
and were used to build the examples below.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the Arcee model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`ArceeModel`]
|
|
hidden_size (`int`, *optional*, defaults to 2560):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 18432):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
|
The maximum sequence length that this model might ever be used with. AFM-4.5B-Base supports up to 16384 tokens.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 128000):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 128001):
|
|
End of stream token id.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
|
accordingly.
|
|
Expected contents:
|
|
`rope_type` (`str`):
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'yarn'], with 'default' being the original RoPE implementation.
|
|
`factor` (`float`, *optional*):
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
|
original maximum pre-trained length.
|
|
`original_max_position_embeddings` (`int`, *optional*):
|
|
Used with 'yarn'. The original max position embeddings used during pretraining.
|
|
`attention_factor` (`float`, *optional*):
|
|
Used with 'yarn'. The scaling factor to be applied on the attention computation. If unspecified,
|
|
it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value.
|
|
`beta_fast` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 32.
|
|
`beta_slow` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 1.
|
|
attention_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
mlp_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
|
head_dim (`int`, *optional*):
|
|
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
|
|
|
```python
|
|
>>> from transformers import ArceeModel, ArceeConfig
|
|
|
|
>>> # Initializing an Arcee AFM-4.5B-Base style configuration
|
|
>>> configuration = ArceeConfig()
|
|
|
|
>>> # Initializing a model from the AFM-4.5B-Base style configuration
|
|
>>> model = ArceeModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "arcee"
|
|
base_model_tp_plan = {
|
|
"layers.*.self_attn.q_proj": "colwise",
|
|
"layers.*.self_attn.k_proj": "colwise",
|
|
"layers.*.self_attn.v_proj": "colwise",
|
|
"layers.*.self_attn.o_proj": "rowwise",
|
|
"layers.*.mlp.up_proj": "colwise",
|
|
"layers.*.mlp.down_proj": "rowwise",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
hidden_size=2560,
|
|
intermediate_size=18432,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=None,
|
|
hidden_act="relu2",
|
|
max_position_embeddings=4096,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-5,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=128000,
|
|
eos_token_id=128001,
|
|
tie_word_embeddings=False,
|
|
rope_theta=10000.0,
|
|
rope_scaling=None,
|
|
attention_bias=False,
|
|
attention_dropout=0.0,
|
|
mlp_bias=False,
|
|
head_dim=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
vocab_size=vocab_size,
|
|
hidden_size=hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
num_hidden_layers=num_hidden_layers,
|
|
num_attention_heads=num_attention_heads,
|
|
num_key_value_heads=num_key_value_heads,
|
|
hidden_act=hidden_act,
|
|
max_position_embeddings=max_position_embeddings,
|
|
initializer_range=initializer_range,
|
|
rms_norm_eps=rms_norm_eps,
|
|
use_cache=use_cache,
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
attention_bias=attention_bias,
|
|
attention_dropout=attention_dropout,
|
|
mlp_bias=mlp_bias,
|
|
head_dim=head_dim,
|
|
**kwargs,
|
|
)
|
|
|
|
del self.pretraining_tp
|
|
|
|
|
|
class ArceeMLP(NemotronMLP):
|
|
pass
|
|
|
|
|
|
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
|
|
class ArceeForCausalLM(LlamaForCausalLM):
|
|
pass
|
|
|
|
|
|
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
|
|
class ArceeForSequenceClassification(LlamaForSequenceClassification):
|
|
pass
|
|
|
|
|
|
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
|
|
class ArceeForQuestionAnswering(LlamaForQuestionAnswering):
|
|
pass
|
|
|
|
|
|
@auto_docstring(checkpoint="arcee-ai/AFM-4.5B")
|
|
class ArceeForTokenClassification(LlamaForTokenClassification):
|
|
pass
|
|
|
|
|
|
__all__ = [
|
|
"ArceeConfig",
|
|
"ArceeForCausalLM",
|
|
"ArceeForQuestionAnswering",
|
|
"ArceeForSequenceClassification",
|
|
"ArceeForTokenClassification",
|
|
"ArceeModel", # noqa: F822
|
|
"ArceePreTrainedModel", # noqa: F822
|
|
]
|