team-10/venv/Lib/site-packages/transformers/models/glm4/modular_glm4.py
2025-08-02 02:00:33 +02:00

137 lines
5.1 KiB
Python

# coding=utf-8
# Copyright 2025 The GLM4 & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import CausalLMOutputWithPast
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ..glm.modeling_glm import GlmAttention, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification
from ..phi3.modeling_phi3 import Phi3MLP
from .configuration_glm4 import Glm4Config
from .modeling_glm4 import Glm4RMSNorm
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-0414"
class Glm4MLP(Phi3MLP):
pass
class Glm4DecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Glm4Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Glm4Attention(config=config, layer_idx=layer_idx)
self.mlp = Glm4MLP(config)
self.input_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_self_attn_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mlp_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Glm4Attention(GlmAttention):
pass
class Glm4ForCausalLM(GlmForCausalLM):
def forward(
self,
**super_kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(**super_kwargs)
class Glm4ForSequenceClassification(GlmForSequenceClassification):
pass
class Glm4ForTokenClassification(GlmForTokenClassification):
pass
__all__ = [
"Glm4PreTrainedModel", # noqa: F822
"Glm4Model", # noqa: F822
"Glm4ForCausalLM",
"Glm4ForSequenceClassification",
"Glm4ForTokenClassification",
]