team-10/venv/Lib/site-packages/transformers/models/pixtral/configuration_pixtral.py
2025-08-02 02:00:33 +02:00

106 lines
4.1 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pixtral model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PixtralVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PixtralVisionModel`]. It is used to instantiate an
Pixtral vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to the vision encoder used by Pixtral-12B.
e.g. [pixtral-hf/pixtral-9b](https://huggingface.co/pixtral-hf/pixtral-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of input channels in the input images.
image_size (`int`, *optional*, defaults to 1024):
Max dimension of the input images.
patch_size (`int`, *optional*, defaults to 16):
Size of the image patches.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
Activation function used in the hidden layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for the attention layers.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import PixtralVisionModel, PixtralVisionConfig
>>> # Initializing a Pixtral-12B style configuration
>>> config = PixtralVisionConfig()
>>> # Initializing a model (with randomly initialized weights) from the configuration
>>> model = PixtralVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pixtral"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
attention_dropout=0.0,
rope_theta=10000.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.rope_theta = rope_theta
self.head_dim = hidden_size // num_attention_heads
self.initializer_range = initializer_range
__all__ = ["PixtralVisionConfig"]