team-10/venv/Lib/site-packages/transformers/quantizers/quantizer_quark.py
2025-08-02 02:00:33 +02:00

113 lines
3.8 KiB
Python

# coding=utf-8
# Copyright 2025 Advanced Micro Devices, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any
from ..file_utils import is_torch_available
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
if is_torch_available():
import torch
from ..utils import is_accelerate_available, is_quark_available, logging
if is_accelerate_available():
from accelerate.utils import set_module_tensor_to_device
logger = logging.get_logger(__name__)
CHECKPOINT_KEYS = {
"weight_scale": "weight_quantizer.scale",
"bias_scale": "bias_quantizer.scale",
"input_scale": "input_quantizer.scale",
"output_scale": "output_quantizer.scale",
"weight_zero_point": "weight_quantizer.zero_point",
"bias_zero_point": "bias_quantizer.zero_point",
"input_zero_point": "input_quantizer.zero_point",
"output_zero_point": "output_quantizer.zero_point",
}
class QuarkHfQuantizer(HfQuantizer):
"""
Quark quantizer (https://quark.docs.amd.com/latest/).
"""
requires_calibration = True # On-the-fly quantization with quark is not supported for now.
required_packages = ["quark"]
# Checkpoints are expected to be already quantized when loading a quark model. However, as some keys from
# the checkpoint might mismatch the model parameters keys, we use the `create_quantized_param` method
# to load the checkpoints, remapping the keys.
requires_parameters_quantization = True
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.json_export_config = quantization_config.json_export_config
def validate_environment(self, *args, **kwargs):
if not is_quark_available():
raise ImportError(
"Loading a Quark quantized model requires the `quark` library but it was not found in the environment. Please refer to https://quark.docs.amd.com/latest/install.html."
)
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
from quark.torch.export.api import _map_to_quark
_map_to_quark(
model,
self.quantization_config.quant_config,
pack_method=self.json_export_config.pack_method,
custom_mode=self.quantization_config.custom_mode,
)
return model
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: dict[str, Any],
**kwargs,
) -> bool:
return True
def create_quantized_param(
self, model, param, param_name, param_device, state_dict, unexpected_keys
) -> "torch.nn.Parameter":
postfix = param_name.split(".")[-1]
if postfix in CHECKPOINT_KEYS:
param_name = param_name.replace(postfix, CHECKPOINT_KEYS[postfix])
set_module_tensor_to_device(model, param_name, param_device, value=param)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
def is_serializable(self, safe_serialization=None):
return False
@property
def is_trainable(self):
return False