team-2/test2_with_training/scripts/train.py
2025-08-02 00:45:58 +02:00

271 lines
9.1 KiB
Python

# scripts/train.py
"""
Script di training per il classificatore basilico vs pomodoro.
Funzionalità:
- Carica dataset da data/basil_tomato/train e /val
- Transfer learning con EfficientNet-B0
- Salva il miglior modello in models/basil_tomato_classifier.pth
"""
import os
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import efficientnet_b0, EfficientNet_B0_Weights
from torch.utils.data import DataLoader
from pathlib import Path
# 1) Percorsi dataset (usa percorsi assoluti per sicurezza)
script_dir = Path(__file__).parent
base_dir = script_dir.parent if script_dir.parent.name != "scripts" else script_dir
train_dir = base_dir / "scripts" / "data" / "basil_tomato" / "train"
val_dir = base_dir / "scripts" / "data" / "basil_tomato" / "val"
models_dir = base_dir / "scripts" / "models"
print(f"🔍 Cercando dataset in:")
print(f" Train: {train_dir}")
print(f" Val: {val_dir}")
print(f" Models: {models_dir}")
# Verifica esistenza directory
if not train_dir.exists():
print(f"❌ Directory train non trovata: {train_dir}")
sys.exit(1)
if not val_dir.exists():
print(f"❌ Directory validation non trovata: {val_dir}")
sys.exit(1)
# 2) Valori standard di normalizzazione ImageNet
IMGNET_MEAN = [0.485, 0.456, 0.406]
IMGNET_STD = [0.229, 0.224, 0.225]
# 3) Trasformazioni dati
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(IMGNET_MEAN, IMGNET_STD)
])
val_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(IMGNET_MEAN, IMGNET_STD)
])
# 4) Dataset e DataLoader con error handling
try:
train_ds = datasets.ImageFolder(str(train_dir), transform=train_transforms)
val_ds = datasets.ImageFolder(str(val_dir), transform=val_transforms)
if len(train_ds) == 0:
print(f"❌ Nessuna immagine trovata in {train_dir}")
sys.exit(1)
if len(val_ds) == 0:
print(f"❌ Nessuna immagine trovata in {val_dir}")
sys.exit(1)
except Exception as e:
print(f"❌ Errore nel caricamento dataset: {e}")
sys.exit(1)
# Ottimizza batch size per GPU disponibile
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
batch_size = 32 if gpu_memory > 6 else 16
num_workers = min(4, os.cpu_count() or 1)
print(f"🚀 GPU: {torch.cuda.get_device_name(0)} ({gpu_memory:.1f} GB)")
print(f"⚙️ Batch size ottimizzato: {batch_size}")
else:
batch_size = 8
num_workers = min(2, os.cpu_count() or 1)
print("💻 Usando CPU")
train_loader = DataLoader(
train_ds, batch_size=batch_size, shuffle=True,
num_workers=num_workers, pin_memory=torch.cuda.is_available()
)
val_loader = DataLoader(
val_ds, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=torch.cuda.is_available()
)
print(f"✅ Classi trovate: {train_ds.classes}")
print(f"📊 Numero immagini - Train: {len(train_ds)}, Validation: {len(val_ds)}")
# Verifica bilanciamento classi
class_counts_train = {}
class_counts_val = {}
for idx, (_, label) in enumerate(train_ds):
class_name = train_ds.classes[label]
class_counts_train[class_name] = class_counts_train.get(class_name, 0) + 1
for idx, (_, label) in enumerate(val_ds):
class_name = val_ds.classes[label]
class_counts_val[class_name] = class_counts_val.get(class_name, 0) + 1
print(f"📈 Distribuzione train: {class_counts_train}")
print(f"📈 Distribuzione val: {class_counts_val}")
# 5) Configura device (già fatto sopra)
# 6) Costruisci il modello con pesi pre-addestrati (fix deprecation warning)
print("🔄 Caricando EfficientNet-B0 con pesi pre-addestrati...")
try:
model = efficientnet_b0(weights=EfficientNet_B0_Weights.IMAGENET1K_V1)
num_classes = len(train_ds.classes)
# Sostituisci il classificatore finale
model.classifier[1] = nn.Linear(
model.classifier[1].in_features,
num_classes
)
model = model.to(device)
# Ottimizzazioni per GPU
if torch.cuda.is_available():
model = model.half() # Usa mixed precision per risparmiare memoria
print("✅ Mixed precision attivata")
print(f"✅ Modello caricato con {num_classes} classi: {train_ds.classes}")
except Exception as e:
print(f"❌ Errore nel caricamento del modello: {e}")
sys.exit(1)
# 7) Criterio e ottimizzatore
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(
model.parameters(), lr=1e-4, weight_decay=1e-5
)
# 8) Funzione di training per un'epoca con progress tracking
def train_epoch():
model.train()
running_loss, running_corrects = 0.0, 0
total_batches = len(train_loader)
for batch_idx, (inputs, labels) in enumerate(train_loader):
inputs, labels = inputs.to(device), labels.to(device)
# Mixed precision per GPU
if torch.cuda.is_available():
inputs = inputs.half()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += (outputs.argmax(1) == labels).sum().item()
# Progress tracking
if (batch_idx + 1) % max(1, total_batches // 10) == 0:
progress = (batch_idx + 1) / total_batches * 100
print(f" 📈 Training progress: {progress:.1f}% ({batch_idx + 1}/{total_batches})")
epoch_loss = running_loss / len(train_ds)
epoch_acc = running_corrects / len(train_ds)
return epoch_loss, epoch_acc
# 9) Funzione di validazione con progress tracking
def validate_epoch():
model.eval()
val_loss, val_corrects = 0.0, 0
total_batches = len(val_loader)
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(val_loader):
inputs, labels = inputs.to(device), labels.to(device)
# Mixed precision per GPU
if torch.cuda.is_available():
inputs = inputs.half()
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
val_corrects += (outputs.argmax(1) == labels).sum().item()
# Progress tracking
if (batch_idx + 1) % max(1, total_batches // 5) == 0:
progress = (batch_idx + 1) / total_batches * 100
print(f" 📊 Validation progress: {progress:.1f}% ({batch_idx + 1}/{total_batches})")
loss = val_loss / len(val_ds)
acc = val_corrects / len(val_ds)
return loss, acc
# 10) Loop di training principale con miglioramenti
if __name__ == "__main__":
import time
best_val_acc = 0.0
models_dir.mkdir(exist_ok=True)
print(f"\n🚀 Iniziando training per {10} epoche...")
print(f"💾 I modelli saranno salvati in: {models_dir}")
start_time = time.time()
for epoch in range(1, 11): # 10 epoche
epoch_start = time.time()
print(f"\n🔄 Epoca {epoch}/10:")
# Training
print(" 🏋️ Training...")
train_loss, train_acc = train_epoch()
# Validation
print(" 🔍 Validation...")
val_loss, val_acc = validate_epoch()
epoch_time = time.time() - epoch_start
print(
f"✅ Epoca {epoch}: train_loss={train_loss:.4f}, "
f"train_acc={train_acc:.4f} | val_loss={val_loss:.4f}, "
f"val_acc={val_acc:.4f} | tempo={epoch_time:.1f}s"
)
# Salva il miglior modello con validazione
if val_acc > best_val_acc:
best_val_acc = val_acc
save_path = models_dir / "basil_tomato_classifier.pth"
try:
# Salva sia state_dict che modello completo
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_val_acc': best_val_acc,
'train_acc': train_acc,
'val_loss': val_loss,
'classes': train_ds.classes,
'num_classes': num_classes
}, save_path)
print(f"💾 Nuovo best model salvato con val_acc={val_acc:.4f}")
except Exception as e:
print(f"❌ Errore nel salvataggio: {e}")
# Cleanup GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
total_time = time.time() - start_time
print(f"\n🎉 Training completato! Best val_acc: {best_val_acc:.4f}")
print(f"⏱️ Tempo totale: {total_time:.1f}s ({total_time/60:.1f} minuti)")
# Statistiche finali
if torch.cuda.is_available():
print(f"📊 Memoria GPU utilizzata: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB")
torch.cuda.reset_peak_memory_stats()